ensor的索引、切片和拼接一、相关命令命令1:拼接-torch.cat()格式: torch.cat(tensors, dim=0, out=None) → Tensor解释:在指定维度上拼接两个tensor>>> x = torch.randn(2, 3) >>> x tensor([[ 0.6580, -1.0969, -0.4614],
 PyTorch作为一款流行深度学习框架其热度大有超越TensorFlow的感觉。根据此前的统计,目前TensorFlow虽然仍然占据着工业界,但PyTorch在视觉和NLP领域的顶级会议上已呈一统之势。这篇文章笔者将和大家聚焦于PyTorch的自定义数据读取pipeline模板和相关trciks以及如何优化数据读取的pipeline等。我们从PyTorch的数据对象类Dataset开始
转载 2024-01-21 01:26:19
13阅读
tensor经常需要进行拼接、拆分与调换维度,比如通道拼接,比如通道调至最后一个维度等,本文的目的是详细讨论一下具体是怎么拼接的。如果本来就理解这其中的原理的童鞋就不用往下看了,肯定觉得啰嗦了~~拼接即两个tensor按某一维度进行拼接,分两种情况,一个是不新增维度,一个是新增维度。1.torch.cat(tensors, dim=0, *, out=None)  ---不新增维度ten
torch.catimport torch a=torch.randn(3,4) #随机生成一个shape(3,4)的tensort b=torch.randn(2,4) #随机生成一个shape(2,4)的tensor print("a:") print(a) print("b:") print(
转载 2020-08-28 21:17:00
190阅读
Pytorch 张量维度变化是比较常用和重要的操作,本文主要介绍几种常用的维度变化方法:1. view()方法释义:返回当前张量的视图张量;Pytorch 允许一个 tensor 成为现有 tensor 的一个视图,视图张量与其基础张量共享同样的底层数据。视图张量能够避免明显的数据拷贝,因而能够让我们快速且内存高效地进行张量重塑、切片和逐元素操作。所以可以通过 t.view() 方法来获取 ten
转载 2023-11-20 02:08:59
194阅读
前面已经生成了6个特征图上所有的PriorBox的位置和已经将特征图转化为相应的分类和边框位置的预测值。为了可以进行训练,我们还需要进行标签的生成和计算损失。标签生成这一步主要是按照一定的原则,对所有的PriorBox赋予正、负样本的标签,并确定对应的真实物体标签,以方便后续损失的计算。我们已经求得了求得8732个PriorBox坐标及对应的类别、位置预测后,首先要做的就是为每一个PriorBox
转载 2024-06-14 21:46:11
21阅读
作者:曾芃壹 文章目录Tensor基本创建方法Tensor快速创建方法常用数学操作线性代数运算连接和切片变形CUDA加速自动微分基本原理向前传播反向传播非标量输出 TensorTensor,中文为张量,是pytorch中最基本的数据类型#导入torch包 import torch基本创建方法#torch.Tensor()传入参数构造矩阵 x=torch.Tensor(2,4) print(x) p
模型的保存和加载都在系列化的模块下先看保存的更详细的可以参考这里https://pytorch.org/docs/stable/notes/serialization.html#preserve-storage-sharing torch.save()并torch.load()让您轻松保存和加载张量:最简单的就是t = torch.tensor([1., 2.]) torch.save(t, 't
转载 2023-10-11 06:23:50
2418阅读
PyTorch教程【五】TensorBoard的使用 一、安装TensorBoard1、进入Anaconda Prompt,激活环境conda activate pytorch(或直接在PyCharm中打开Terminal终端)2、输入命令pip install tensorboard3、安装成功二、代码示例from torch.utils.tensor
转载 2023-07-24 18:21:35
151阅读
Pytorch学习笔记】Day01 - Pytorch的基本操作 文章目录【Pytorch学习笔记】Day01 - Pytorch的基本操作一、创建Tensor二、数据操作2.1 算术操作2.2 索引2.3 改变形状2.4 Tensor、NumPy 和 标量 的 互通2.5 线性代数相关函数三、Tensor的广播机制四、运算的内存开销五、Tensor在CPU和GPU之间相互移动 一、创建Tens
转载 2023-09-03 18:11:20
186阅读
本文参考了官方文档及各个大佬的博客在神经网络模型中需要对参数求导更新,pytorch中Autograd包为张量上的所有操作提供了自动求导机制。它是一个在运行时定义(define-by-run)的框架,这意味着反向传播是根据代码如何运行来决定的,并且每次迭代可以是不同的。本文涉及:        Tensor属性:.gr
测试环境版本: torch1.7.1 + CPU python 3.6Tensorpytorch中的“张量”,可以看作是类似numpy的矩阵 本文介绍如何创建与调整Tensor参考书目: 《深度学习框架pytorch: 入门与实践》陈云著首先引用torch:import torch as t1、创建tensor1)使用Tensor函数创建tensor# 1 指定形状 a = t.Tensor(2
创建Tensor的多种方法从numpy创建import torch import numpy as np a = np.array([2, 3.3]) a = torch.from_numpy(a) # torch.DoubleTensor从list创建a = torch.FloatTensor([2, 3.3]) # 尽量少用这种方式,容易和给shape的情况看混淆 b = torch.t
转载 2023-08-24 17:08:55
277阅读
上一篇博客讲述了如何根据自己的实际需要在pytorch中创建tensor,这一篇主要来探讨关于tensor的基本数据变换,是pytorch处理数据的基本方法。 文章目录1 tensor数据查看与提取2 tensor数据变换2.1 重置tensor形状:pytorch.view()2.2 增加/减少tensor维度:torch.unsqueeze()/torch.squeeze()2.3 tenso
在文章PyTorch-Tutorials【pytorch官方教程中英文详解】- 1 Quickstart中是快速介绍版本。接下来具体看看pytorch中的重要概念:Tensor(张量)。官网链接:Tensors — PyTorch Tutorials 1.10.1+cu102 documentationTensors are a specialized data structure that ar
pytorch作为一款经典的深度学习工具,几乎统治了科研/学生党在深度学习工具领域的全部江山。 从本篇博客开始,我将会陆续更新一些关于pytorch的基础用法和实战操作。 文章目录1 Tensor简介2 使用特定数据创建Tensor2.1 使用numpy格式的数据创建2.2 直接输入数据创建2.3 元素值相同矩阵的创建2.4 连续数据range的创建2.5 特殊矩阵的创建3 使用随机数据创建Ten
张量维度操作(拼接、维度扩展、压缩、转置、重复……)note: torch.fun(tensor1)和tensor1.fun()都只会返回改变后的tensor,但是tensor本身的维度和数据都不会变。包括unsqueeze、expand等等。张量切片选择TORCH.INDEX_SELECTtorch.index_select(input, dim, index, *, out=None)示例&g
转载 2024-08-22 22:25:09
62阅读
tensor是深度学习运算的基本数据结构,本文主要归纳总结了Pytorch中的tensor对象的基础知识,包括它的常用属性、创建方法以及类型转化。1. Tensor属性Pytorch中定义了许多类,类就包括属性和行为(方法),Tensor是最基本的类,是用来运算的基本单位。tensor的大多属性都不是基本数据类型,而是Pytorch中定义的类,比如torch.dtype、torch.device等
转载 2023-08-30 10:58:22
238阅读
计算图与动态图机制计算图是用来描述运算的有向无环图。计算图有两个主要元素:结点(Node)和边(Edge)。结点表示数据,如向量,矩阵,张量;边表示运算,如加减乘除卷积等。 下面用计算图表示:y = ( x + w ) ∗ ( w + 1 ) 采用计算图描述运算的好处:不仅使得运算更加简洁,而且使得梯度求导更加方便。下面用代码展示上述计算图梯度求导过程:import torch # 需要计算梯度
Tensor attributes:在tensor attributes中有三个类,分别为torch.dtype, torch.device, 和 torch.layout其中, torch.dtype 是展示 torch.Tensor 数据类型的类,pytorch 有八个不同的数据类型,下表是完整的 dtype 列表. Torch.device 是表现 torch.Tensor被分配的
  • 1
  • 2
  • 3
  • 4
  • 5