目录 1 杂谈2 蒸馏方法概述。2.1 基于最后输出层的蒸馏2.2 基于中间结果层的蒸馏2.3 基于元学习的蒸馏3 实验结果和参考代码1 杂谈鉴于目前算法和数据的瓶颈,我最近研究了一下模型蒸馏,目的是通过大模型能够带动我需要的小模型。目前的模型蒸馏这方面的研究已经不少了,专业术语上也有了KD(Knowl-edge Distillation (KD)), knowledge tr
# 在 PyTorch 中实现模型蒸馏的入门指南 ## 1. 什么是模型蒸馏模型蒸馏(Model Distillation)是一种模型压缩技术,其目标是将一个复杂的“大”模型(教师模型)中的知识提取并传递给一个简单的“小”模型(学生模型)。这种方法不仅可以减小模型的体积,还能保持较高的预测性能。特别是在深度学习中,蒸馏技术使得在计算资源受限的设备上部署模型成为可能。 ## 2. 模型蒸馏
原创 2024-09-10 06:50:24
263阅读
众所周知,python训练pytorch模型得到.pt模型。但在实际项目应用中,特别是嵌入式端部署时,受限于语言、硬件算力等因素,往往需要优化部署,而tensorRT是最常用的一种方式。本文以yolov5的部署为例,说明模型部署在x86架构上的电脑端的流程。(部署在Arm架构的嵌入式端的流程类似)。一、环境安装1. 安装tensorRT根据自己的系统Ubuntu版本、CPU架构、CUDA版本来选择
转载 2023-07-30 00:22:31
276阅读
使用Pytorch进行知识蒸馏一、知识蒸馏原理1. 使用 `softmax` 进行蒸馏:2. 知识迁移:老师知识 —> 学生知识二、知识蒸馏实现1. 导入各种包2. 设置随机种子3. 加载 MNIST 数据集4. 定义教师模型5. 设置模型6. 开始训练教师模型7. 定义并训练学生模型8. 预测前准备和设置9. 开始训练附录1. 关于 `import torch.nn as nn`2. 关
两种蒸馏形式:模型蒸馏模型压缩,模型不同,特征相同)优势特征蒸馏(大模型使用全量特征,适用于模型相同,特征不同)俩种训练方式:pre-train是预先训练teacher网络,然后再训练student网络;co-train则是通过上述介绍的损失对teacher网络和student网络进行联合训练,co-train方式往往训练速度更快,但所需的GPU资源也会更多。teacher - 原始模型模型
       目录一、模型蒸馏简介和步骤二、模型蒸馏实战1、Bilstm和Roberta文本分类效果展示2、roberta蒸馏到bilstm三、Roberta压缩——theseus理解和实战1、bert-of-theseus思想和方法2、利用bert-of-theseus实现的roberta压缩模型压缩有剪枝、蒸馏和量化等一些方法,模型蒸馏实现起来比较容易简
# PyTorch 官方蒸馏实现教程 ## 一、整体流程 为了帮助你更好地理解如何在 PyTorch 中实现官方蒸馏,我将通过以下表格展示整个流程: | 步骤 | 描述 | | ------ | ------ | | 1 | 定义教师模型和学生模型 | | 2 | 定义损失函数 | | 3 | 准备数据集 | | 4 | 遍历数据集进行训练 | | 5 | 保存学生模型 | ## 二、具体
原创 2024-04-16 03:33:08
192阅读
       知识蒸馏(Knowledge Distillation)的概念由Hinton大神于2015年在论文《Distilling the Knowledge in a Neural Network》中提出,论文见:https://arxiv.org/abs/1503.02531。此方法的主要思想为:通过结构复杂、计算量大但是性能优秀的教师神经网络,对结
转载 2024-10-27 21:39:14
64阅读
选自arxiv,作者:Tongzhou Wang等,机器之心编译,参与:路、王淑婷。 近日,来自 FAIR、MIT 和加州大学伯克利分校的 Tongzhou Wang、朱俊彦等人发布新研究论文,提出一种新的蒸馏方法——数据集蒸馏。这与将知识从复杂网络迁移到较简单模型不同,该方法将原始数据集中大量数据集的知识压缩到少量合成数据上,同时在合成数据上训练的模型性能与在原始数据集上的模
蒸馏的作用首先,什么是蒸馏,可以做什么?正常来说,越复杂的深度学习网络,例如大名鼎鼎的BERT,其拟合效果越好,但伴随着推理(预测)速度越慢的问题。此时,模型蒸馏就派上用场了,其目的就是为了在尽量减少模型精度的损失的前提下,大大的提升模型的推理速度。实现方法其实,模型蒸馏的思想很简单。第一步,训练好原本的复杂网络模型,如BERT,我们称为Teacher模型;第二步,用一个较为简单的模型去拟合Tea
由于bert模型参数很大,在用到生产环境中推理效率难以满足要求,因此经常需要将模型进行压缩。常用的模型压缩的方法有剪枝、蒸馏和量化等方法。比较容易实现的方法为知识蒸馏,下面便介绍如何将bert模型进行蒸馏。一、知识蒸馏原理模型蒸馏的目的是用一个小模型去学习大模型的知识,让小模型的效果接近大模型的效果,小模型被称为student,大模型被称为teacher。知识蒸馏的实现可以根据teacher和st
目录前言一、蒸馏的目的二、蒸馏中的softmax三、蒸馏流程1.step2.step3.step4.总结: 前言蒸馏就是把一个大模型变成一个相对小的模型一、蒸馏的目的Distill knowledge from bigger models从大模型中学习知识Use the distilled knowledge to guide the learning of smaller models用学习到
转载 2024-03-04 13:39:59
398阅读
论文:Knowledge Distillation via the Target-aware Transformer代码:暂未发布 背景蒸馏学习是提高小神经网络性能事实上的标准,以前的工作大多建议以一对一的空间匹配方式将教师的代表特征回归到学生身上。然而,人们往往忽略这样一个事实,由于结构的差异,同一空间的语义信息通常是变化的,这大大削弱了一对一的蒸馏方法的基本假设。他们高估了空间顺序的
模型在训练后需要更改,以创建更紧凑的表示形式。这一过程的主要实现技术包括剪枝(pruning)和知识蒸馏。.
转载 2020-11-27 11:24:29
710阅读
模型蒸馏(Model Distillation)是一种将复杂、庞大的教师模型(Teacher Model)的知识迁移到相对简单、轻量级的学生模型(Student Model)的技术。其
【代码】蒸馏学习(Pytorch入门)
原创 2023-12-08 08:42:33
418阅读
知识蒸馏(knowledge distillation)是模型压缩的一种常用的方法,不同于模型压缩中的剪枝和量化,知识蒸馏是通过构建一个轻量化的小模型,利用性能更好的大模型的监督信息,来训练这个小模型,以期达到更好的性能和精度。最初的知识蒸馏:中间层注重纹理细节,深层特征注重抽象语义 如上图所示,教师网络(左侧)的预测输出除以温度参数(Temperature)之后、再做Softma
# 分类特征蒸馏PyTorch实现 随着深度学习的不断发展,模型的性能与计算成本之间的平衡愈加重要。特别是在图像分类任务中,如何利用已有的深度模型来提升新模型的性能成为了一个热门的研究方向,其中的“特征蒸馏”技术就是一个有效的解决方案。 ## 什么是特征蒸馏? 特征蒸馏(Feature Distillation)是一种训练新模型(学生模型)的策略,该策略旨在从已经训练好的复杂模型(教师模型
iCaRL论文解读注:本文是增量学习三大流派中知识重放派的基础文献。当前引用量1860。1.问题简述 图1.1 类增量学习机 类增量问题的关键在于理解清楚流式在线训练和离线训练之间的区别。流式在线训练的过程中数据是源源不断的进入模型的,而离线训练则是在科研人员把数据集收集完整之后,一次性训练搜集到的数据来拟合任务。假设我们想要训练一个可以识别猫、狗和鸡的一个神经网络。当我们搜集到了想要的猫
一、知识蒸馏算法理论讲解 知识蒸馏说真的还是挺重要的,当时看论文的时候,总是会出现老师网络和学生网络,把我说的一脸蒙,所以自己就进行了解了一下,做了一些笔记和大家一起分享!不过大家也可以看同济子豪兄的视频,非常不错。知识蒸馏Pytorch代码实战_哔哩哔哩_bilibili,连接给到大家了。首先我们要知道为什么要进行知识蒸馏,那就是在训练的时候,我们可以去花费一切的资源和算力去训练模型
  • 1
  • 2
  • 3
  • 4
  • 5