文章目录前言模型训练套路1.准备数据集2.训练数据集和测试数据集的长度3.搭建网络模型4.创建网络模型、损失函数以及优化器5.添加tensorboard6.设置训练网络的一些参数7.开始训练模型8.查看tensorboard的结果模型验证套路1.输入图片2.加载网络模型3.验证结果总结 前言本周主要学习了Pytorch的使用,用Dataset读取文件中的数据,DataLoader对Dataset
转载
2023-08-11 20:22:27
197阅读
PyTorch 2.0 通过简单一行 torch.compile() 就可以使模型训练速度提高 30%-200%,本教程将演示如何真实复现这种提速。torch.compile() 可以轻松地尝试不同的编译器后端,进而加速 PyTorch 代码的运行。它作为 torch.jit.script() 的直接替代品,可以直接在 nn.Module 上运行,无需修改源代码。上篇文章中,我们介绍了 torch
转载
2024-01-11 21:57:32
129阅读
Pytorch预训练模型以及修改pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数)。往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数。加载m
转载
2024-01-24 23:23:47
122阅读
PyTorch学习笔记(4)_模型、数据、训练过程的可视化Tensorboard 文章目录PyTorch学习笔记(4)_模型、数据、训练过程的可视化Tensorboard0 本章概要1 安装TensorBoard1.1 数据和模型准备1.2 设置TensorBoard2 写入TensorBoard3 在TensorBoard中查看模型4 添加一个“Projector”到TensorBoard5 在
转载
2024-06-03 15:12:59
66阅读
定义是否使用GPU可有可无,默认为 cpudevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")训练数据:BATCH_SIZE = 64 :批处理尺寸,即一次处理图像的张数 加载训练数据 : 以cifar10 为例trainset = torchvision.datasets.CIFAR10(root='./dat
转载
2023-07-10 18:35:55
109阅读
目录1.选取训练模型中的损失函数1.1L1损失函数1.2均值平方差(MSE)损失函数1.3交叉熵损失(CrossEntropyLoss)函数1.4加权交叉熵1.5分类模型中常用的3种损失函数2.Softmax接口的使用3.优化器的使用与优化参数的查看3.1优化器的使用3.2优化参数的查看4.用退化学习率训练模型4.1手动实现退化学习率4.2PyTorch中的退化学习率接口----lr_sched
转载
2024-07-17 20:56:40
83阅读
目录基本流程一、数据处理二、模型搭建三、定义代价函数&优化器四、训练附录nn.Sequentialnn.Modulemodel.train() 和 model.eval() 损失图神经网络基本流程 1. 数据预处理(Dataset、Dataloader)2. 模型搭建(nn.Module)3. 损失&优化(loss、optimizer)4. 训练(forward、
转载
2023-08-08 14:53:00
0阅读
模型训练的开发过程可以看作是一套完整的生产流程,这些环节包括: 数据读取、网络设计、优化方法与损失函数的选择以及一些辅助的工具等,TorchVision是一个和PyTorch配合使用的Python包,包含很多图像处理工具PyTorch中的数据读取模型训练开始的第一步就是数据读取,PyTorch提供了十分方便的数据读取机制,使用Dataset类与DataLoader的组合来得到数据迭代器。在训练或预
转载
2024-05-08 10:07:12
31阅读
Pytorch应用训练好的模型1.保存训练好的模型:torch.save方法2.加载之前保存的模型:torch.load方法3.对于分类问题的补充4.CPU训练完整代码5.GPU训练方法一6.GPU训练方法二7.GPU训练过程的细节优化8.验证模型 1.保存训练好的模型:torch.save方法保存训练好的模型有两种方式,第一种保存模型结构且保存模型参数,第一种方式存在一种陷阱,也就是每次加载模
转载
2023-07-16 14:45:26
524阅读
目录简介随机裁剪Totensor数据标准化(减均值,除以标准差)transforms 的⼆⼗⼆个⽅法1. 裁剪——Crop中心裁剪:transforms.CenterCrop随机裁剪:transforms.RandomCrop随机长宽比裁剪:transforms.RandomResizedCrop上下左右中心裁剪:transforms.FiveCrop上下左右中心裁剪后翻转,transforms.
转载
2024-09-01 23:40:53
57阅读
1、加载预训练模型调用网上的预训练参数:如果在下载文件夹里没有相应的预训练模型参数文件(.pth),则会直接从网上下载。import torchvision.models as models
#resnet
model = models.ResNet(pretrained=True)
model = models.resnet18(pretrained=True)
model = models
转载
2023-08-30 15:04:10
481阅读
文章目录前言一、模型训练流程二、加载数据集三、定义模型四、模型训练&测试五、整体流程以下是训练的整体流程前言就本人在学习深度学习的过程中,记录并分享基于pytorch框架的一个深度学习神经网络的分类训练的模板;文末有源码。一、模型训练流程加载数据集数据预处理特征工程 (如果你需要有这个步骤?)模型训练模型评估二、加载数据集使用pytorch下的dataset类,其中分为两种形式:加载官方
转载
2023-10-16 19:58:24
126阅读
Pytorch学习第四部分:pytorch进阶训练技巧Let's go !一、U-Net模块回顾1.1 模块代码2.2 搭建过程二、Carvana数据集,实现一个基本的U-Net训练过程三、优雅地训练模型3.1 自定义损失函数3.1.1 使用torch.nn自带的损失函数3.1.2 使用自定义的损失函数3.2 动态调整学习率3.3 模型微调3.4 半精度训练3.4.1 pytorch精度测试3.
转载
2024-07-29 11:11:40
260阅读
pytorch入门2.x构建回归模型系列:pytorch入门2.0构建回归模型初体验(数据生成)pytorch入门2.1构建回归模型初体验(模型构建)pytorch入门2.2构建回归模型初体验(开始训练)经过上面两个部分,我们完成了数据生成、网络结构定义,下面我们终于可以小试牛刀,训练模型了!
首先,我们先定义一些训练时要用到的参数:EPOCH = 1000 # 就是要把数据用几遍
LR = 0
转载
2024-05-13 17:26:22
45阅读
1. 笔者的一些经验笔者血泪史中最重要的一点:网络输出到求loss之间的操作,尽可能简洁如果NN的输出直接和label可以进行对比,那是最好的情况,比如输出是猫还是狗这种tag如果不能直接进行对比,则应该尽可能简洁,同时注意以下问题:1. 1 尽可能注意避免原地操作:原地操作无法溯源,backward的时候找不到之前的值了
能用torch.squeeze(x),不用x.squeeze_()
转载
2023-10-31 21:50:18
167阅读
1. 保存模型:torch.save(model.state_dict(), PATH)加载模型:model.load_state_dict(torch.load(PATH))model.eval()2. 什么是状态字典:state_dict?在PyTorch中, torch.nn.Module 模型的可学习参数(即权重和偏差)包含在模型的参数中,(使用model.parameters() 可以进
转载
2023-10-17 17:20:11
463阅读
这一节的内容,将研究如何通过保存、加载和运行预测模型来保持模型状态。导入相应的包:import torch
import torchvision.models as models1、 保存和加载模型权重PyTorch 模型将学习到的参数存储在称为 state_dict 的内部状态字典中。 这些参数可以通过 torch.save 方法保存起来:model = models.vgg16(pretrai
转载
2023-09-26 19:11:55
327阅读
模型量化(基于pytorch)1、量化简介1.1、量化介绍1.2、量化方法1.2.1、训练后动态量化(Post Training Dynamic Quantization)1.2.2、训练后静态量化(Post Training Static Quantization)1.2.3、量化意识训练2、总结与注意事项 1、量化简介1.1、量化介绍基于pytorch的量化官方地址https://pytor
转载
2023-08-01 15:47:45
240阅读
pytorch保存模型非常简单,主要有两种方法:只保存参数;(官方推荐)保存整个模型 (结构+参数)。
由于保存整个模型将耗费大量的存储,故官方推荐只保存参数,然后在建好模型的基础上加载。本文介绍两种方法,但只就第一种方法进行举例详解。1、只保存参数1)保存一般地,采用一条语句即可保存参数:torch.save(model.state_dict(), path)其中model指定义的模型实例变量,
转载
2023-08-09 19:20:36
920阅读
PyTorch的学习和使用(七)模型的训练和测试在训练模型时会在前面加上:model.train()在测试模型时在前面使用:model.eval()同时发现,如果不写这两个程序也可以运行,这是因为这两个方法是针对在网络训练和测试时采用不同方式的情况,比如Batch Normalization 和 Dropout。Batch Normalization BN主要时对网络中间的每层进行归一化处理,并且
转载
2024-03-13 13:30:31
83阅读