1. LSTM 网络基本原理
2. 使用 Python 包 torch 实现网络构建、训练与验证
使用Python构建LSTM网络实现对时间序列的预测1. LSTM网络神经元结构 LSTM网络 神经元结构示意图 \(t\),LSTM网络神经元接收该时刻输入信息 \(x_t\),输出此时刻的隐藏状态 \(h_t\
转载
2023-06-26 15:24:47
814阅读
知识点数据集的标准化数据集的划分Sigmoid 函数乳腺癌的预测数据集的预处理import pandas as pd
df = pd.read_csv(
'https://labfile.oss.aliyuncs.com/courses/2534/breast_cancer.csv', index_col=False)
df 可以看到该数据集合一共有 569 条数据,每条数据有 30 个和乳腺癌相
一、本文介绍本文给大家带来的实战内容是利用PyTorch实现LSTM-GRU模型,LSTM和GRU都分别是RNN中最常用Cell之一,也都是时间序列预测中最常见的结构单元之一,本文的内容将会从实战的角度带你分析LSTM和GRU的机制和效果,同时如果你是时间序列中的新手,这篇文章会带你了解整个时间序列的建模过程,同时本文的实战代码支持多元预测单元、单元预测单元、多元预测多元,本文的实战内容通过时间序
转载
2024-08-09 00:01:27
484阅读
本文为你介绍如何在Keras深度学习库中搭建用于多变量时间序列预测的LSTM模型。长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。这为时间序列预测带来极大益处,因为经典线性方法
转载
2024-06-06 21:36:24
542阅读
LSTM在时间序列预测方面的应用非常广,但有相当一部分没有考虑使用多长的数据预测下一个,类似AR模型中的阶数P。我基于matlab2021版编写了用LSTM模型实现多步预测时间序列的程序代码,可以自己调整使用的数据“阶数”。序列数据是我随机生成的,如果有自己的数据,就可以自己简单改一下代码,读取txt或excel都可以。注意读取后的序列必须命名
转载
2024-04-01 09:41:51
113阅读
# 多步预测的基本流程与实现
多步预测是时间序列预测中的一个重要任务,尤其在机器学习和深度学习领域。本文将引导你通过 PyTorch 实现一个简单的多步预测模型,以便于你更好地理解过程。我们将一步步介绍整个实现流程,并提供详尽的代码注释。
## 整体流程
以下是实现多步预测的流程图,展示了每一步的主要任务。
```mermaid
gantt
title 多步预测流程
sec
本文尝试应用长短期记忆(LSTM,Long Short-Term Memory)神经网络模型对月度时序数据进行预测,样本时序数据时间跨度2017年1月至今,同时对多个目标变量时序数据进行预测。本文主要参考了《python预测之美》部分章节内容,暂不做详尽的理论说明与代码解释,仅做个人积累记录使用,如有侵权或不合规请及时联系处理~目录1、样本数据获取2、数据预处理3、重构数据结构,划分训练集与测试集
转载
2024-01-04 00:38:08
320阅读
机器学习和深度学习已越来越多应用在时序预测中。ARIMA 或指数平滑等经典预测方法正在被 XGBoost、高斯过程或深度学习等机器学习回归算法所取代。尽管时序模型越来越复杂,但人们对时序模型的性能表示怀疑。有研究表明,复杂的时序模型并不一定会比时序分解模型有效(Makridakis, 2018)。技术提升技术要学会分享、交流,不建议闭门造车。好的文章离不开粉丝的分享、推荐,资料干货、资料分享、数据
转载
2023-09-30 21:18:21
106阅读
【时间序列预测/分类】 全系列60篇由浅入深的博文汇总
前三篇文章,讨论了单变量、多变量和多步时间序列预测。对于不同的问题,可以使用不同类型的LSTM模型,例如Vanilla、Stacked、Bidirectional、CNN-LSTM、Conv LSTM模型。这也适用于涉及多变量和多时间步预测的时间序列预测问题,但可能更具挑战性。本文将介绍多变量多时间步预测LSTM模型,主要内容如下:多变量输入
转载
2023-12-04 21:13:57
296阅读
说明:《pytorch车型细分类网络》、这篇文章代码有错误。我稍微调整了一下,可以正常跑了。标题:pytorch动手实践:pytorch车型细分类网络1)讲解,代码,主要参考知乎文章《pytorch车型细分类网络》,代码规范,容易读懂,但是原文代码跑不通。我调试修改了一下可以跑通了,小白可参考本篇的源码。2)本项目是关于车型分类,resnet50网络,可供基础学习使用。3)下载数据:下载链接《10
转载
2024-09-21 22:28:18
46阅读
# LSTM 单变量多步预测的实现指南
长短期记忆网络(LSTM)是一种在时间序列预测中表现优异的递归神经网络(RNN)。在本指南中,我们将从零开始实现一个单变量多步预测的LSTM模型。首先,我们将简要描述整个流程,并以表格的方式呈现步骤,接着逐步细化每一步的实现代码。
## 流程步骤概述
下面的表格总结了实现LSTM 单变量多步预测的主要步骤:
| 步骤 | 描述
时间序列是指在一段时间内发生的任何可量化的度量或事件。尽管这听起来微不足道,但几乎任何东西都可以被认为是时间序列。一个月里你每小时的平均心率,一年里一只的日收盘价,一年里某个城市每周发生的交通事故数。在任何一段时间段内记录这些信息都被认为是一个时间序列。对于这些例子中的每一个,都有事件发生的频率(每天、每周、每小时等)和事件发生的时间长度(一个月、一年、一天等)。在本教程中,我们将使用 PyT
转载
2023-11-01 13:43:59
36阅读
各位朋友大家好,今天来讲一下LSTM时间序列的预测进阶。 现在我总结一下常用的LSTM时间序列预测:1.单维单步(使用前两步预测后一步) 可以看到trainX的shape为 (5,2) trainY为(5,1) 在进行训练的过程中要将trainX reshape为 (5,2,1)(LSTM的输入为 [samples, timesteps, features] 这里的timesteps为步数,fea
转载
2024-01-08 13:58:17
958阅读
文章目录0 简介1 基于 Keras 用 LSTM 网络做时间序列预测2 长短记忆网络3 LSTM 网络结构和原理3.1 LSTM核心思想3.2 遗忘门3.3 输入门3.4 输出门4 基于LSTM的天气预测4.1 数据集4.2 预测示例5 基于LSTM的股票价格预测5.1 数据集5.2 实现代码6 lstm 预测航空旅客数目数据集预测代码7 最后 0 简介今天学长向大家介绍LSTM基础基于LST
转载
2023-11-30 11:37:27
226阅读
对于一个单词,会有这不同的词性,首先能够根据一个单词的后缀来初步判断,比如 -ly 这种后缀,很大概率是一个副词,除此之外,一个相同的单词可以表示两种不同的词性,比如 book 既可以表示名词,也可以表示动词,所以到底这个词是什么词性需要结合前后文来具体判断。根据这个问题,我们可以使用 lstm 模型来进行预测,首先对于一个单词,可以将其看作一个序列,比如 apple 是由 a p p l e 这
转载
2024-04-02 10:58:56
63阅读
目录I. 前言II. 原理InputsOutputsbatch_first输出提取III. 训练和预测IV. 源码及数据 I. 前言前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM。II. 原理关于LSTM的输入输出在深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中已经有过详细叙述。关于nn.LSTM的参数,官方文档给出的解释为: 总共有七个参
转载
2023-08-01 20:24:33
606阅读
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。 它可以是秒、分钟、小时、天、周、月、年。 未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,
转载
2023-08-12 20:12:01
22阅读
今天我给大家介绍一个国外深度学习大牛Jason Brownlee写的一篇关于多变量时间序列预测的博客,我在原文的代码基础上做了一点点修改,只是为了便于大家更好的理解。在本文中,您将了解如何在Keras深度学习库中为多变量时间序列预测开发LSTM模型。读完成本文后,您将了解:如何将原始数据集转换为可用于时间序列预测的数据。如何准备数据并使LSTM适合多变量时间序列预测问题。如何进行预测并将结果重新调
转载
2024-06-06 22:54:24
174阅读
目录I. 前言II. seq2seqIII. 代码实现3.1 数据处理3.2 模型搭建3.3 模型训练/测试3.4 实验结果IV. 源码及数据 I. 前言系列文章:深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)PyTorch搭建LSTM实现时间序列预测(负荷预测)PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测PyTorch搭建LSTM实现
转载
2023-11-30 22:10:47
604阅读
1评论
# LSTM预测与PyTorch简介
长短期记忆网络(LSTM,Long Short-Term Memory)是一种特殊的递归神经网络,能够更好地处理和预测序列数据,尤其是时间序列。LSTM通过其独特的门控机制,能够记住较长时间序列的信息,并在数据的长期依赖性问题中表现优异。本篇文章将介绍如何在PyTorch中实现LSTM的预测,并给出一个简单的代码示例。
## LSTM的基本原理
LSTM