# 多步预测的基本流程与实现 多步预测是时间序列预测中的一个重要任务,尤其在机器学习和深度学习领域。本文将引导你通过 PyTorch 实现一个简单的多步预测模型,以便于你更好地理解过程。我们将一步步介绍整个实现流程,并提供详尽的代码注释。 ## 整体流程 以下是实现多步预测的流程图,展示了每一步的主要任务。 ```mermaid gantt title 多步预测流程 sec
原创 10月前
103阅读
机器学习和深度学习已越来越多应用在时序预测中。ARIMA 或指数平滑等经典预测方法正在被 XGBoost、高斯过程或深度学习等机器学习回归算法所取代。尽管时序模型越来越复杂,但人们对时序模型的性能表示怀疑。有研究表明,复杂的时序模型并不一定会比时序分解模型有效(Makridakis, 2018)。技术提升技术要学会分享、交流,不建议闭门造车。好的文章离不开粉丝的分享、推荐,资料干货、资料分享、数据
知识点数据集的标准化数据集的划分Sigmoid 函数乳腺癌的预测数据集的预处理import pandas as pd df = pd.read_csv( 'https://labfile.oss.aliyuncs.com/courses/2534/breast_cancer.csv', index_col=False) df 可以看到该数据集合一共有 569 条数据,每条数据有 30 个和乳腺癌相
说明:《pytorch车型细分类网络》、这篇文章代码有错误。我稍微调整了一下,可以正常跑了。标题:pytorch动手实践:pytorch车型细分类网络1)讲解,代码,主要参考知乎文章《pytorch车型细分类网络》,代码规范,容易读懂,但是原文代码跑不通。我调试修改了一下可以跑通了,小白可参考本篇的源码。2)本项目是关于车型分类,resnet50网络,可供基础学习使用。3)下载数据:下载链接《10
一、本文介绍本文给大家带来的实战内容是利用PyTorch实现LSTM-GRU模型,LSTM和GRU都分别是RNN中最常用Cell之一,也都是时间序列预测中最常见的结构单元之一,本文的内容将会从实战的角度带你分析LSTM和GRU的机制和效果,同时如果你是时间序列中的新手,这篇文章会带你了解整个时间序列的建模过程,同时本文的实战代码支持多元预测单元、单元预测单元、多元预测多元,本文的实战内容通过时间序
1. LSTM 网络基本原理 2. 使用 Python 包 torch 实现网络构建、训练与验证 使用Python构建LSTM网络实现对时间序列的预测1. LSTM网络神经元结构 LSTM网络 神经元结构示意图 \(t\),LSTM网络神经元接收该时刻输入信息 \(x_t\),输出此时刻的隐藏状态 \(h_t\
转载 2023-06-26 15:24:47
814阅读
目录引言其他数据预处理技巧划分数据集创建自己的数据集构建Dataset子类创建自己的数据集(Dataset子类实例化)数据加载器DataLoader的功能使用DataLoader结束语 引言在当今的深度学习时代,PyTorch已经成为许多机器学习研究者和工程师的首选框架。然而,仅仅依赖优秀的模型架构并不足以实现卓越的预测性能。在将数据输入模型之前,对其进行适当的预处理是至关重要的。在这篇文章中,
1简介近年来,随着机器学习与深度学习的发展,以及 Amazon SageMaker(https://aws.amazon.com/cn/sagemaker/)等机器学习平台的成熟,数据科学家们不再需要关心底层的基础设施及构建复杂的训练与推理环境,从而可以把主要的时间与精力放在数据与算法本身。在机器学习变得更容易的今天,越来越多的传统行业已经开始使用机器学习算法来解决现实中的问题,降低成本及提升效率
作者:沂水寒城本文主要是基于LSTM(Long Short-Term Memory)长短期记忆神经网络来实践多变量序列预测,并完成对未来指定步长时刻数据的预测、分析和可视化,手把手教你去搭建属于自己的预测分析模型。本文主要分为:LSTM模型简介、数据探索分析、模型构建测试三个部分。一、LSTM模型简介既然说到了LSTM,就要简单的介绍一下RNN(Recurrent Neural Netw
转载 2023-10-05 20:08:31
178阅读
目录单步预测多步预测的联系多步预测方法(1)Direct Multi-step Forecast Strategy (直接多步预测策略)(2)Recursive Multi-step Forecast (递归多步预测策略)(3)Direct-Recursive Hybrid Strategies(直接递归混合多步预测策略)预测模式单步预测多步预测的联系   &nb
目录I. 前言II. 单步滚动预测III. 代码实现3.1 数据处理3.2 模型搭建3.3 模型训练/测试3.4 实验结果IV. 源码及数据 II. 单步滚动预测比如前10个预测后3个:我们首先利用[1…10]预测[11’],然后利用[2…10 11’]预测[12’],最后再利用[3…10 11’ 12’]预测[13’],也就是为了得到多个预测输出,我们直接预测多次,并且在每次预测时将之前的预测
# Python 多步预测指南 在数据科学与机器学习的领域中,多步预测(Multi-Step Forecasting)是指在时间序列数据中,我们不仅要预测下一个时间点的值,还要预测未来多个时间点的值。这篇文章将向你介绍如何使用 Python 实现多步预测,并提供一份详细的代码示例。 ## 流程步骤 首先,我们来看实现多步预测的步骤。以下是整个过程的流程表: | 步骤 | 描述
原创 9月前
110阅读
       LSTM在时间序列预测方面的应用非常广,但有相当一部分没有考虑使用多长的数据预测下一个,类似AR模型中的阶数P。我基于matlab2021版编写了用LSTM模型实现多步预测时间序列的程序代码,可以自己调整使用的数据“阶数”。序列数据是我随机生成的,如果有自己的数据,就可以自己简单改一下代码,读取txt或excel都可以。注意读取后的序列必须命名
本文尝试应用长短期记忆(LSTM,Long Short-Term Memory)神经网络模型对月度时序数据进行预测,样本时序数据时间跨度2017年1月至今,同时对多个目标变量时序数据进行预测。本文主要参考了《python预测之美》部分章节内容,暂不做详尽的理论说明与代码解释,仅做个人积累记录使用,如有侵权或不合规请及时联系处理~目录1、样本数据获取2、数据预处理3、重构数据结构,划分训练集与测试集
转载 2024-01-04 00:38:08
320阅读
1.单步预测所谓单步预测,就是每—次预测的时候 输入窗口 只 预测 未来一个值。单步预
```mermaid flowchart TD start((开始)) step1[准备数据集] step2[构建模型] step3[训练模型] step4[预测结果] end((结束)) start --> step1 step1 --> step2 step2 --> step3 step3 --> st
原创 2024-03-11 04:00:07
110阅读
      距离上一篇文章,正好两个星期。 这篇文章9月15日 16:30 开始写。 可能几个小时后就写完了。用一句粗俗的话说, “当你怀孕的时候,别人都知道你怀孕了, 但不知道你被日了多少回 ” ,纪念这两周的熬夜,熬夜。  因为某些原因,文章发布的有点仓促,本来应该再整理实验和代码比较合适。文章都是两个主要作用: 对自己的工作总结, 方便自己回顾和分享给有兴趣的朋
本文为你介绍如何在Keras深度学习库中搭建用于多变量时间序列预测的LSTM模型。长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。这为时间序列预测带来极大益处,因为经典线性方法
转载 2024-06-06 21:36:24
542阅读
机器学习多步预测是指根据过去的观察和趋势,对未来的多个时间点进行预测。这种预测在金融、气候、能源等领域有广泛应用。然而,这一过程并不简单,常常会面临诸多挑战。本文将详细分析在实现机器学习多步预测过程中遇到的问题,并给出相应的解决方案。 ## 问题背景 在实施机器学习多步预测时,我们注意到一个明显的现象:模型在预测后几步时的准确率显著下降。这种情况下,领导层对模型的表现产生了怀疑,认为该模型无法
各位朋友大家好,今天来讲一下LSTM时间序列的预测进阶。 现在我总结一下常用的LSTM时间序列预测:1.单维单步(使用前两步预测后一步) 可以看到trainX的shape为 (5,2) trainY为(5,1) 在进行训练的过程中要将trainX reshape为 (5,2,1)(LSTM的输入为 [samples, timesteps, features] 这里的timesteps为步数,fea
  • 1
  • 2
  • 3
  • 4
  • 5