作者:Ja1r0用PyTorch构建的神经网络,其梯度计算是通过torch.autograd来完成的。当我们进行了一系列计算,并想获取一些变量间的梯度信息,需要进行以下步骤:构建一个计算图,用Variable将Tensor包装起来,形成计算图中的节点。然后Variable之间进行各种运算就像Tensor之间的运算一样,Variable支持几乎所有的Tensor运算。当你进行完一系列运算之后,可以执
文章目录Log一、TensorBoard1. TensorBoard 的安装2. SummaryWriter 的使用① add_scalar() 的使用a. 参数说明b. 函数使用c. 使用 Tensorboard② add_image() 的使用a. 参数说明b. 使用 numpy.array() 对 PIL 图片进行转换c. 使用函数d. 改变 global_step二、Transforms
转载
2023-12-15 11:10:01
49阅读
什么是pytorch? pytorch是一个基于python语言的的科学计算包,主要分为两种受众:能够使用GPU运算取代NumPy提供最大灵活度和速度的深度学习研究平台开始Tensors Tensors与numpy的ndarray相似,且Tensors能使用GPU进行加速计算。 创建5 * 3的未初始化矩阵: 创建并随机初始化矩阵: 创建一个类型为long且值全为
转载
2024-09-30 10:52:43
65阅读
目标检测IoU GIoU DIoU CIoU EIoU LossL1 L2 Loss&Smooth L1 LossIoU LossGIoU LossDIoU LossCIoU LossEIoU Loss L1 L2 Loss&Smooth L1 LossL1 Loss对x的导数为常数,在训练后期,x很小时,如果learning rate 不变,损失函数会在稳定值附近波动,很难收敛
转载
2024-06-18 06:04:52
96阅读
1.png
相信大家在做一些算法经常会被庞大的数据量所造成的超多计算量需要的时间而折磨的痛苦不已,接下来我们围绕四个方法来帮助大家加快一下Python的计算时间,减少大家在算法上的等待时间1.介绍:在PyTorch模块中,我将展示如何使用torch和检查、初始化GPU设备pycuda,以及如何使算法更快。PyTorch是建立在torch的机器学习库。它得
转载
2023-12-28 14:11:30
15阅读
分享 | 将Pytorch模型部署到Movidius神经计算棒内容提要这篇文章将是从笔者一个小白的视角出发,演示如何将自己训练的网络模型使用OpenVINO的优化器进行优化,并将其部署到神经计算棒进行推理加速的过程。正文部分1.将Pytorch模型转化为ONNX格式我们可以从脚本中保存网络的结构开始看,Pytorch保存模型分为两种:
① 只保留模型参数只保留参数[/align]torch.
转载
2023-10-17 13:05:23
123阅读
1.ROC-AUC 和PR-AUC定义 AUC:
随机抽出一对样本(一个正样本,一个负样本),然后用训练得到的分类器来对这两个样本进行预测,预测得到正样本的概率大于负样本概率的概率。 ROC-AUC 指的是 ROC 曲线下的面积,通过在【0,1】范围内设置阈值来计算对应的TPR和FPR,最终将所有的点连起来构成ROC曲线。 PR-AUC 的构造和上述过程基本一致,只是需要再计算
转载
2023-08-08 14:50:40
438阅读
PyTorch | 自动求导 Autograd一、自动求导要点二、计算图三、标量反向传播四、非标量反向传播1. 定义叶子节点及算子节点2. 手工计算 y 对 x 的梯度3. 调用 backward 来获取 y 对 x 的梯度 在神经网络中,一个重要的内容就是进行参数学习,而参数学习离不开求导,那么 是如何进行求导的呢? 现在大部分深度学习架构都有自动求导的功能, 也不例外, 中所有神
转载
2024-02-28 14:25:07
39阅读
本章将理解 RS/D 锁存器的概念,了解 RS/D/JK 触发器的概念,使用 Verilog 实现各种锁存器
原创
2023-07-09 10:38:30
2987阅读
题目传送门 1 /* 2 题意:将子符串分成k组,每组的字符顺序任意,问改变后的字符串最少有多少块 3 三维DP:可以知道,每一组的最少块是确定的,问题就在于组与组之间可能会合并块,总块数会-1。 4 dp[i][j]表示第i组以第j个字符结尾的最少块数,状态转移方程...
转载
2015-08-07 16:06:00
73阅读
2评论
一、计算图与动态机制 计算图是一个表示运算的有向无环图。如果学过图论,应该对有向无环图这个概念很熟悉。一个有向无环图包含“结点”和“边”。TensorFlow和PyTorch都用到计算图。Pytorch中结点表示数据,如向量、矩阵、张量等。边表示运算,如加减乘除等。TensorFlow的数据流图中结点表示
转载
2023-09-25 12:55:28
0阅读
参考https://zhuanlan.zhihu.com/p/376925457四种计算pytorch参数的方式参数计算1. 使用thop计算import torch
from thop import profile
from models.yolo_nano import YOLONano
device = torch.device("cpu")
#input_shape of model,b
转载
2023-08-17 12:58:40
168阅读
PyTorch: Tensors这次我们使用PyTorch tensors来创建前向神经网络,计算损失,以及反向传播。 一个PyTorch Tensor很像一个numpy的ndarray。但是它和numpy ndarray最大的区别是,PyTorch Tensor可以在CPU或者GPU上运算。如果想要在GPU上运算,就需要把Tensor换成cuda类型。 import tor
转载
2023-11-20 12:48:46
218阅读
目录 说明BatchNorm1d参数num_featuresepsmomentumaffinetrack_running_statsBatchNorm1d训练时前向传播BatchNorm1d评估时前向传播总结说明网络训练时和网络评估时,BatchNorm模块的计算方式不同。如果一个网络里包含了BatchNorm,则在训练时需要先调用train(),使网络里的BatchNorm
文章目录使用PyTorch构建神经网络,并使用thop计算参数和FLOPsFLOPs和FLOPS区别使用PyTorch搭建神经网络整体代码1. 导入必要的库2. 定义神经网络模型3. 打印网络结构4. 计算网络FLOPs和参数数量5. 结果如下手动计算params手动计算FLOPs注意 使用PyTorch构建神经网络,并使用thop计算参数和FLOPsFLOPs和FLOPS区别FLOPs(flo
转载
2023-08-10 12:01:07
279阅读
model.eval()和with torch.no_grad()的区别在PyTorch中进行validation时,会使用model.eval()切换到测试模式,在该模式下,主要用于通知dropout层和batchnorm层在train和val模式间切换
在train模式下,dropout网络层会按照设定的参数p设置保留激活单元的概率(保留概率=p); batchnorm层会继续计算数据的
转载
2023-10-20 22:21:23
98阅读
PyTorch入门 2 —— 张量数值运算基本运算点积运算 / 矩阵乘法比较运算逻辑运算初等函数运算统计运算指定运算设备 在神经网络中都会根据需要进行各种向量、矩阵的运算,使用 PyTorch 可以很方便地使用各种函数方法完成计算需求。在 PyTorch 中,计算的数据都是以张量形式存在,PyTorch 为每个张量封装很多实用的计算函数,并且既可以在 CPU 中运算也可以在 GPU 中运算。本篇
转载
2023-11-25 11:24:21
119阅读
FunctionDescriptionDetailaddAdds other, scaled by alpha, to input.多个张量相加运算sumReturns the sum of all elements in the input tensor.元素的求和累加运算subSubtracts other, scaled by alpha, from input.多个张量相减运算prodRe
转载
2023-10-20 14:00:25
50阅读
本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因。KerasKeras本身并不是一个框架,而是一个位于其他深度学习框架之上的高级API。目前它支持TensorFlow、Theano和CNTK。Keras的优点在于它的易用性。这是迄今为止最容易上手并快速运行的框架。定义神经网络是非常直观的,因为使用API可以将层定义为函数。PytorchPytorch是一个深度学习框架
转载
2023-09-05 10:20:32
96阅读
数据处理工具箱torchvision简介transforms对PIL Image的常见操作对Tensor的常见操作如下ImageFolder可视化工具tensorboardX简介用tensorboardX可视化神经网络用tensorboardX可视化损失值参考文献 torchvision简介torchvision中有4个功能模块:model、datasets、transforms和utils。利
转载
2024-01-21 05:09:57
39阅读