本次我们要学会使用DataLoader数据加载器来对数据集进行mini_batch批处理,这样可以防止过拟合,以便有更好的泛化能力。几个名词的解释:epoch:指的是一次性训练全部样本的次数total_size:全部的样本数batch_size:指的是将全部样本分批训练,一批中的样本数total_batch:指的是将全部样本分为多少批来看下面这个例子:total_size = 10000 有100
转载
2024-06-12 20:47:44
126阅读
1.自上而下理解三者关系 首先我们看一下DataLoader.next的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据)class DataLoader(object):
...
def __next__(self):
if self.num_workers == 0:
可视化网络结构使用torchinfo工具包来可视化网络结构。使用print函数打印模型基础信息以ResNet18为例import torchvision.models as models
model = models.resnet18()
print(model)这时候得到的模型信息输出结果只能得出基础构件的信息,既不能显示出每一层的shape,也不能显示对应参数量的大小。具体结果如下:ResNe
转载
2024-08-15 11:58:57
293阅读
张量操作篇1 数据类型转换1.1数据类型1.2数据类型转换2 张量操作2.1 形状操作2.2切片和合并2.3 归约计算2.4索引求取 1 数据类型转换1.1数据类型整型数据代码描述tf.int88位整数tf.int1616位整数tf.int3232位整数tf.int6464位整数tf.uint88位无符号整数。tf.uint1616位无符号整数。浮点型数据代码描述tf.float1616位浮点数
转载
2024-10-15 20:30:20
90阅读
# PyTorch如何打印张量中的某个值
在使用PyTorch进行深度学习和科学计算时,经常需要对张量(Tensor)进行操作。例如,有时我们需要打印张量中特定位置的值。在这篇文章中,我们将详细探讨如何在PyTorch中实现这一功能,包括代码示例,以及整个流程的可视化表示。
## 1. 理解张量
张量是PyTorch中最基本的数据结构,它可以是任意维度的数组。大多数深度学习的输入和输出都是张
【TensorFlow 数据流图】 【说明】 【一】【Tensor】【张量】在数学里,张量是一种几何实体,广义上表示任意形式的 “数据”。张量可以理解为0阶(rank)标量、1阶向量和2阶矩阵在该纬度空间上的推广,张量的阶描述它表示数据的最大纬度张量是用来表示多维数据的,是执行操作时的输入或输出数据两个重要属性:数据类型 (浮点、整型、字符串等) + 数组形状 (各维度大小)张量的形状不一定在编译
文章目录目的Python和Pytorch数据类型对应创建tensor的方法一些常用的生成tensor方法tensor的切片与索引tensor的维度变换(重点)tensor的叠加和分割tensor的数学运算tensor的统计相关操作 目的在Pytorch中必须使用Pytorch特有的张量(tensor)数据类型,本文介绍tensor的基本操作Python和Pytorch数据类型对应 以上数据是存储
转载
2023-10-20 18:13:55
128阅读
Java实现调用Bartender控制条码打印机
原创
2022-01-30 13:33:56
641阅读
# Java 中 PageFormat 设置打印张数
在 Java 中,打印功能通常使用 `java.awt.print` 包中的类来实现。我们可以通过 `PageFormat` 类来定义打印的格式,包括打印纸张的大小、取向和每页的内容。在某些情况下,您可能希望控制打印的张数,这可以通过实现 `Printable` 接口来实现。本文将详细介绍如何设置打印张数,并提供相关代码示例。
## 1.
原创
2024-09-14 05:11:08
103阅读
PyTorch框架学习(二) — 张量操作与线性回归1 张量的操作1.1 拼接1.2 切分1.3 索引1.4 变换2 张量的数学运算2.1 加法运算2.2 减法运算2.3 哈达玛积运算(element wise,对应元素相乘)2.4 除法运算2.5 特殊运算 torch.addcdiv2.6 特殊运算 torch.addcmul2.7 幂函数2.7 指数函数2.8 对数函数2.9 三角函数2.1
转载
2023-09-14 22:03:42
157阅读
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
转载
2023-10-26 11:26:48
108阅读
Pytorch 零基础学习系列 之 创建张量在深度学习中,神经网路结构是基础;在Pytorch中,张量是构建神经网络的基础 。从本质上讲,Pytorch就是一个处理张量的库。一个张量可以是一个数字、向量、矩阵或者任何n维数组。比较重要的一点是张量可以在GPU上进行计算。例如,下图分别展示了1维张量,2维张量和3维张量:如何创建一般张量?方法一(1) 导入 pytorch 和 numpyimport
转载
2023-08-30 10:36:22
164阅读
Pytorch简介Pytorch是一个基于Python的深度学习框架,可以代替Numpy在GPU上进行科学计算。什么是TensorTensor即张量,类似于Numpy的ndarrays,tensor可以在GPU上使用以加速计算。Pytorch创建张量的常用方法创建一个未初始化的张量,其值不确定:# 初始化值不确定,由所分配内存的当前值决定
x = torch.empty(5, 3)
print(x
转载
2023-09-21 06:25:21
396阅读
Java实现调用Bartender控制条码打印机
原创
2021-06-22 13:09:17
397阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载
2023-08-21 09:16:40
162阅读
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载
2023-09-27 22:27:49
298阅读
张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维度,则新增一个维度进行拼接,新维度只能高一维) &nbs
转载
2023-07-28 19:31:33
205阅读
【学习笔记】【Pytorch】张量(Tensor)的基础操作一、创建张量1.使用数据创建张量2.无需数据的创建选项3.torch.Tensor与torch.tensor的区别4.PyTorch中张量的创建方法的选择二、张量的属性1.张量的 torch.dtype2.张量的 torch.device3.张量的 torch.layout三、张量的形状四、重构张量reshape函数中-1表示的意义五、
转载
2023-11-09 08:48:34
134阅读
一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。
在介绍张量分解前,我们先看看矩阵分解相关知识概念。 一、基本概念矩阵补全(Matrix Completion)目的是为了估计矩阵中缺失的部分(不可观察的部分),可以看做是用矩阵X近似矩阵M,然后用X中的元素作为矩阵M中不
转载
2024-01-23 17:02:49
358阅读
本文介绍PyTorch创建张量的三种方式,分别为直接创建、依据数值创建以及依据概率创建。1.直接创建1.1 使用数组创建1.1.1 语法:1.1.2 说明:1.1.3 程序:arr=np.ones((3,3))
print("arr的数据类型为:"+str(arr.dtype))
t=torch.tensor(arr)
print(t)1.1.4运行结果:1.2 使用numpy创建1.2.1 语法
转载
2024-08-09 22:02:10
100阅读