Pytorch简介Pytorch是一个基于Python的深度学习框架,可以代替Numpy在GPU上进行科学计算。什么是TensorTensor即张量,类似于Numpy的ndarrays,tensor可以在GPU上使用以加速计算。Pytorch创建张量的常用方法创建一个未初始化的张量,其值不确定:# 初始化值不确定,由所分配内存的当前值决定
x = torch.empty(5, 3)
print(x
转载
2023-09-21 06:25:21
396阅读
PyTorch框架学习(二) — 张量操作与线性回归1 张量的操作1.1 拼接1.2 切分1.3 索引1.4 变换2 张量的数学运算2.1 加法运算2.2 减法运算2.3 哈达玛积运算(element wise,对应元素相乘)2.4 除法运算2.5 特殊运算 torch.addcdiv2.6 特殊运算 torch.addcmul2.7 幂函数2.7 指数函数2.8 对数函数2.9 三角函数2.1
转载
2023-09-14 22:03:42
157阅读
Pytorch 零基础学习系列 之 创建张量在深度学习中,神经网路结构是基础;在Pytorch中,张量是构建神经网络的基础 。从本质上讲,Pytorch就是一个处理张量的库。一个张量可以是一个数字、向量、矩阵或者任何n维数组。比较重要的一点是张量可以在GPU上进行计算。例如,下图分别展示了1维张量,2维张量和3维张量:如何创建一般张量?方法一(1) 导入 pytorch 和 numpyimport
转载
2023-08-30 10:36:22
164阅读
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
转载
2023-10-26 11:26:48
108阅读
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载
2023-09-27 22:27:49
298阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载
2023-08-21 09:16:40
162阅读
张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维度,则新增一个维度进行拼接,新维度只能高一维) &nbs
转载
2023-07-28 19:31:33
201阅读
一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。
在介绍张量分解前,我们先看看矩阵分解相关知识概念。 一、基本概念矩阵补全(Matrix Completion)目的是为了估计矩阵中缺失的部分(不可观察的部分),可以看做是用矩阵X近似矩阵M,然后用X中的元素作为矩阵M中不
转载
2024-01-23 17:02:49
354阅读
目录1.拼接torch.cat()
torch.stack()2.切分:torch.chunk()
torch.split()3.索引torch.index_select()
torch.masked_select()
torch.ge(),gt(),le(),lt() 4.变换:torch.reshape()
torch.trans
转载
2023-08-16 11:28:50
128阅读
Tensors 张量 类似于NumPy的ndarrays,可以使用GPU进行计算。概念:张量(Tensor)是一个定义在一些向量空间和一些对偶空间的笛卡儿积上的多重线性映射,其坐标是|n|维空间内,有|n|个分量的一种量, 其中每个分量都是坐标的函数, 而在坐标变换时,这些分量也依照某些规则作线性变换。(1)r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。(2)在同构的意义下,第零阶
转载
2024-02-23 14:27:29
22阅读
PyTorch框架学习三——张量操作一、拼接1.torch.cat()2.torch.stack()二、切分1.torch.chunk()2.torch.split()三、索引1.torch.index_select()2.torch.masked_select()四、变换1.torch.reshape()2.torch.transpace()3.torch.t()4.torch.squeeze
转载
2024-06-24 21:00:13
110阅读
1.BroadcastingBroadcasting能够实现Tensor自动维度增加(unsqueeze)与维度扩展(expand),以使两个Tensor的shape一致,从而完成某些操作,主要按照如下步骤进行:从最后面的维度开始匹配(一般后面理解为小维度);在前面插入若干维度,进行unsqueeze操作;将维度的size从1通过expand变到和某个Tensor相同的维度。举例:Feature
转载
2024-06-07 21:52:43
162阅读
张量的操作:拼接、切分、索引和变换1张量的拼接与切分1.1 torch.cat(tensors,dim=0,out=None) 功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack(tensors,dim=0,out=None)功能:在新创建的维度dim上进行拼接tensors:张量序列dim:要拼接的维度区别:cat不会扩展张量的
转载
2024-02-23 18:51:53
101阅读
1.张量的创建方法通过torch.tensor()方法创建张量,可通过多种形式创建,如下:(1)通过列表创建t = torch.tensor([1, 2])(2)通过元组创建t = torch.tensor((1, 2))(3)通过numpy数组创建import numpy as np
a = np.array((1, 2)) # a是一个numpy多维数组
t = torch.tenso
转载
2023-09-25 08:11:42
145阅读
2. pytorch 张量操作基本数据类型创建 tensor索引与切片tensor 维度变换 基本数据类型pytorch 数据类型对比PyTorch 是面向数值计算的 GPU 加速库,没有内建对 str 类型的支持。one-hot [0,1,0,0,···]Embedding(常用的编码语言[NLP])
word2vecglovePyTorch 内建的数据类型PyTorch 基本数据类
转载
2024-04-08 19:21:00
101阅读
本文介绍PyTorch创建张量的三种方式,分别为直接创建、依据数值创建以及依据概率创建。1.直接创建1.1 使用数组创建1.1.1 语法:1.1.2 说明:1.1.3 程序:arr=np.ones((3,3))
print("arr的数据类型为:"+str(arr.dtype))
t=torch.tensor(arr)
print(t)1.1.4运行结果:1.2 使用numpy创建1.2.1 语法
转载
2024-08-09 22:02:10
100阅读
PyTorch是一个基于Python的科学计算库,它主要针对两类人群:NumPy的替代品,可以利用GPU的性能进行计算;深度学习研究人员,提供了最大的灵活性和速度,以深度学习为核心。在PyTorch中,张量(Tensor)是最基本的数据结构之一,可以看作是一个多维数组。张量与NumPy中的数组非常类似,但是张量可以在GPU上运行,这使得它们比NumPy数组更快。下面是一些关于张量的基本使用方法:创
原创
2023-05-05 20:08:35
105阅读
# PyTorch 张量入门指南
## 引言
PyTorch 是一个基于 Python 的科学计算库,它广泛应用于深度学习领域。在 PyTorch 中,张量(tensor)是最基本的数据结构,用于存储和操作多维数组。本文将向你介绍如何在 PyTorch 中使用张量,帮助你快速入门。
## 张量概述
在进行深入学习之前,我们首先需要了解什么是张量。张量是一种多维数组,与 Numpy 中的数组类似
原创
2023-12-15 11:14:39
47阅读
# PyTorch 张量基础指南
在深度学习的研究和实际开发中,张量是数据表示的核心。PyTorch 是一个流行的深度学习框架,它的张量功能强大且易于使用。本文将帮助你了解如何在 PyTorch 中实现张量的创建和操作。以下是我们的学习流程:
| 步骤 | 描述 |
|-------
原创
2024-09-08 04:35:03
19阅读
张量(Tensor)简单介绍Pytorch最基本的操作对象是Tensor(张量),它表示一个多维矩阵,张量类似于NumPy的ndarrays ,张量可以在GPU上使用以加速计算。生成数据的常用方法以及基本数据类型:构造一个随机初始化的矩阵torch.rand全 0 矩阵torch.zeros全 1 矩阵orch.ones直接从数据构造张量torch.tensor 32位浮点型
转载
2023-09-17 00:02:30
88阅读