一、传入数据tensor只能传入数据可以传入现有的数据列表或矩阵import torch # 当是标量时候,即只有一个数据时候,[]括号是可以省略的 torch.tensor(2) # 输出: tensor(2) # 如果是向量或矩阵,必须有[]括号 torch.tensor([2, 3]) # 输出: tensor([2, 3])Tensor可以传入数据、维度。建议tensor
转载 2024-04-12 22:18:09
68阅读
上一篇博客讲述了如何根据自己的实际需要在pytorch中创建tensor,这一篇主要来探讨关于tensor的基本数据变换,是pytorch处理数据的基本方法。 文章目录1 tensor数据查看与提取2 tensor数据变换2.1 重置tensor形状:pytorch.view()2.2 增加/减少tensor维度:torch.unsqueeze()/torch.squeeze()2.3 tenso
张量1、torch.is_tensor(obj) 如果obj 是一个pytorch张量,则返回True  创建张量1、torch.eyetorch.eye(n, m=None, out=None) 返回一个2维张量,对角线位置全1,其它位置全0 参数: n (int ) – 行数 m (int, optional) – 列数 ---------------------------
不是python层面Tensor的剖析,是C层面的剖析。 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库。可以在torch的github上看到相关文档。看了半天才发现pytorch借鉴了很多torch7的东西。pytorch大量借鉴了torch7下面lua写的东西并且做了更好的设计和优化。https://github.com/torch/torch7
转载 2024-05-31 11:37:40
54阅读
目录一、tensor的创建1.使用tensor2.使用Tensor3.随机初始化4.其他数据生成①torch.full②torch.arange③linspace和logspace④ones, zeros, eye⑤torch.randperm二、tensor的索引与切片1.索引与切片使用方法①index_select②...③mask三、tensor维度的变换1.维度变换①torch.view②
文章目录前因各种Tensor索引操作1. 简单索引2. 一般的花式索引3. 复杂的花式索引4. Informer代码示例 前因之前一直以为对ndarray的各种索引切片操作还算得上熟悉,但今天师弟问了我Informer实现中ProbSparse Self-Attention的一些Tensor索引操作,才发现有些操作还不太懂,而网上也缺乏相关的参考资料。因此在一系列探索下,写下了这篇博客。各种Te
转载 2023-10-09 12:25:49
156阅读
文章目录1. Tensor 属性1.1 Tensor(张量)的属性torch.dtypetorch.devicetorch.layout2. Tensor类型操作2.1 Tensor类型判断torch.is_tensor(obj)torch.is_storage(obj)2.2 类型设置torch.set_default_dtype(d)torch.get_default_dtype()Tens
转载 2023-11-22 12:59:10
75阅读
     在使用Tensor时,我们首先要掌握如何使用Tensor来定义不同数据类型的变量。Tensor时张量的英文,表示多维矩阵,和numpy对应,PyTorch中的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在cpu上运行。      &
转载 2024-05-31 05:07:26
142阅读
类型推断torch.randn():随机初始化a.type():返回类型type():返回基本类型isinstance() :检查类型cuda会影响数据类型标量维度(dimention)为0的标量标量的shape:返回类型为【】(空的list),返回长度也为0a.dimension()也为0Dim1torch.tensor() : 输入具体数据torch.FloatTensor() :输入类型大小
1、Torch张量所有深度学习都是基于张量的计算,这些张量是可以在超过2个维度上索引的矩阵的概括。1.1、生成张量'''随机生成张量''' #初始化5*3的张量 x=torch.empty(5,3) print(x) '''随机生成一个取值在[0,1]之间的张量''' x=torch.randn(5,3) #torch.randn()、torch.normal()、torch.linspace(
例子运行环境为Ubuntu16.04,Python2.7 ,PyTorch.Tensor 一、拼接张量 1、torch.cat(seq, dim=0, out=None) 参数:seq (sequence of Tensors) - Python序列或相同类型的张量序列 dim (int, optional) - 沿着此维度连接张量 out (Tensor, optional) - 输出参数&gt
转载 2023-09-27 13:25:23
113阅读
最近在研究舆情监测,在做自然语言处理部分的时候需要用到深度学习的方法进行特征提取和建模预测,因此在这里学习了下Pytorch。之后整个监测系统做好之后发布到博客里和大家学习交流一下。1.Tensor张量概念 要介绍Tensor这个数据类型,我觉得有必要扯一下数学。我们都知道:标量(Scalar)是只有大小,没有方向的量,如1,2,3等向量(Vector)是有大小和方向的量,其实就是一串数
转载 2024-06-25 17:26:53
233阅读
select(dim, index) –>Tensor or number 按照 index 中选定的维度将 tensor 切片。如果tensor 是一维的,则返回一个数字。否则,返回给定维度已经被移除的 tensor 。 参数: dim (int)- 切片的维度         --index (
转载 2024-04-26 13:00:15
80阅读
Pytorch基础(二)Tensor的索引和切片Tensor的index和select**Dim 0 first:**多维张量的索引默认为第一个维度索引a = torch.Tensor(4, 3, 28, 28) print(a[0].shape) # torch.Size([3,28,28]) print(a[0,0].shape) # troch.Size([28,28])选择前N个或后N个
转载 2023-09-27 13:17:41
294阅读
作者:曾芃壹 文章目录Tensor基本创建方法Tensor快速创建方法常用数学操作线性代数运算连接和切片变形CUDA加速自动微分基本原理向前传播反向传播非标量输出 TensorTensor,中文为张量,是pytorch中最基本的数据类型#导入torch包 import torch基本创建方法#torch.Tensor()传入参数构造矩阵 x=torch.Tensor(2,4) print(x) p
# 使用PyTorch连乘Tensor中获得元素的完整指南 在深度学习与张量运算的世界中,PyTorch是一个非常受欢迎的框架。很多时刻,我们会面临需要从多个张量进行连乘并提取出某个元素的场景。本文将指引你如何利用PyTorch实现这一目标。 ## 整体流程 在实现从连乘张量获得元素的过程中,我们可以将其拆分为以下几个步骤: | 步骤 | 描述
原创 2024-09-13 04:27:13
35阅读
本文参考了官方文档及各个大佬的博客在神经网络模型中需要对参数求导更新,pytorch中Autograd包为张量上的所有操作提供了自动求导机制。它是一个在运行时定义(define-by-run)的框架,这意味着反向传播是根据代码如何运行来决定的,并且每次迭代可以是不同的。本文涉及:        Tensor属性:.gr
Pytorch学习笔记】Day01 - Pytorch的基本操作 文章目录【Pytorch学习笔记】Day01 - Pytorch的基本操作一、创建Tensor二、数据操作2.1 算术操作2.2 索引2.3 改变形状2.4 Tensor、NumPy 和 标量 的 互通2.5 线性代数相关函数三、Tensor的广播机制四、运算的内存开销五、Tensor在CPU和GPU之间相互移动 一、创建Tens
转载 2023-09-03 18:11:20
186阅读
模型的保存和加载都在系列化的模块下先看保存的更详细的可以参考这里https://pytorch.org/docs/stable/notes/serialization.html#preserve-storage-sharing torch.save()并torch.load()让您轻松保存和加载张量:最简单的就是t = torch.tensor([1., 2.]) torch.save(t, 't
转载 2023-10-11 06:23:50
2418阅读
PyTorch教程【五】TensorBoard的使用 一、安装TensorBoard1、进入Anaconda Prompt,激活环境conda activate pytorch(或直接在PyCharm中打开Terminal终端)2、输入命令pip install tensorboard3、安装成功二、代码示例from torch.utils.tensor
转载 2023-07-24 18:21:35
151阅读
  • 1
  • 2
  • 3
  • 4
  • 5