# PyTorch中的梯度反馈操作
PyTorch是一个深受欢迎的深度学习框架,它允许用户轻松地进行张量计算和构建神经网络。与许多计算框架不同,PyTorch采用了动态计算图,这意味着操作是在运行时定义的。这为研究和开发提供了极大的灵活性,尤其是在处理梯度反馈时。本文将探讨PyTorch中梯度反馈的工作机制,并提供代码示例以帮助理解。
## 梯度反馈的基本概念
在深度学习中,梯度反馈(也称为
目录1 自动求梯度1.1 概念1.2 创建Tensor并设置requires_grad1.3 梯度计算 1 自动求梯度在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本文将介绍如何使用autograd包来进行自动求梯度的有关操作。1.1 概念上一节介绍的Tensor是这个包的核心类,如果将
转载
2023-10-24 09:24:16
80阅读
Pytorch 中梯度简单理解Pytorch 的 tensor 带有梯度属性,tensor.grad_fn 存储梯度信息,利用 backward 函数可进行梯度回传import torchx = torch.randn(2, 2, requires_grad=True) # requires_gard 打开梯度同样可以这样打开梯度x = torch.randn(2, 2)x.requires_gard_(True)继续构建计算图print(x, x.grad_fn)
原创
2021-09-14 09:33:29
949阅读
前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part2的内容。 Part2:PyTorch的自动梯度计算 aut
转载
2023-11-14 13:53:29
89阅读
PyTorch中的梯度累加使用PyTorch实现梯度累加变相扩大batch这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)传统的训练函数,一个batch是这么训练的:for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cud
转载
2023-08-08 10:52:27
124阅读
在深度学习中,使用 PyTorch 进行优化时,遇到“原地操作梯度不更新”的问题是一个常见的困扰。这个问题往往在对张量进行原地修改(例如:在反向传播中)时发生,导致梯度的计算不正确。接下来,我将逐步展示如何解决这个问题。
## 环境准备
首先要确保你的开发环境能够支持 PyTorch。以下是软硬件的要求:
- **软件要求**:
- Python 3.6 及以上版本
- PyTorc
# PyTorch:如何实现“不能传递梯度的操作”
在深度学习模型的训练过程中,反向传播算法通常会计算每个参数的梯度,并根据该梯度来更新参数。然而,在某些情况下,我们可能希望某些操作不参与梯度计算。比如,冻结某些参数或者只是想进行一些实验而不影响模型的权重更新。在本篇文章中,我将向刚入行的小白详细说明如何在PyTorch中实现“不能传递梯度的操作”。
## 流程概述
1. **创建一个张量*
创建tensortorch.empty(),未初始化的Tensor torch.rand(),随机初始化的Tensor(均匀分布) torch.randn(),标准分布 torch.normal(),正态分布 torch.uniform(),均匀分布 torch.randperm(),随机排列 torch.zeros(),全零的Tensor torch.ones(),全一的Tensor torch
转载
2023-09-24 10:53:21
186阅读
1.梯度消失和梯度爆炸深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。当神经网络的层数较多时,模型的数值稳定性容易变差。假设一个层数为L的多层感知机的第l层H(l)的权重参数为W(l),输出层H(L)的权重参数为W(L)。为了便于讨论,不考虑偏差参数,且设所有隐藏层的激活函数为恒等映射(identity mapping)ϕ(x)=x。给定输入X,多层感知机
转载
2023-12-24 21:34:43
118阅读
前言本篇笔记以介绍 pytorch 中的 autograd 模块功能为主,主要涉及 torch/autograd 下代码,不涉及底层的 C++ 实现。本文涉及的源码以 PyTorch 1.7 为准。torch.autograd.function (函数的反向传播)torch.autograd.functional (计算图的反向传播)torch.autograd.gradcheck (数值梯度检查
转载
2024-06-21 09:34:30
58阅读
PyTorch学习(二)前言一、autograd自动求梯度二、使用步骤1.示例一2.示例二 前言torch.autograd是 PyTorch 的自动差分引擎,可为神经网络训练提供支持。神经网络就是寻求一个拟合函数,但是因为参数过多,所以不得不借助每一点的梯度来一点一点的接近最佳的loss值,PyTorch 拥有动态的计算图,存储记忆对向量的每一个函数操作,最后通过反向传播来计算梯度,这可以说是
转载
2023-08-27 22:56:45
173阅读
文章目录前言1 概念2 Tensor3 梯度 前言在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本节将介绍如何使用autograd包来进行自动求梯度的有关操作。1 概念Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的
转载
2023-08-10 21:51:16
133阅读
一、梯度导数是对某个自变量求导,得到一个标量。偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数)。梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小。上左图中,箭头的长度表示陡峭度,越陡峭的地方箭头越长,箭头指向的方向是y变大的方向,如果要使用梯度下降,则需要取负方向。右图中,蓝色代表低点,红色代表高点,中间的箭头方向从蓝色指向红色,而且中间最陡峭的地方,
转载
2024-04-14 15:13:38
73阅读
一、概念如果将Tensor的属性.requires_grad属性设置为True,它将开始追踪在其上的所有操作(主要目的是利用链式法则进行梯度传播)。完成计算后,可以调用.backward()方法来完成所有梯度计算。此Tensor的梯度将累计到.grad属性中。注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor。这为了
转载
2023-09-29 10:29:09
154阅读
深度学习其实就是一个最优化问题,找到最小的loss值,因为自变量过多,想要找到最小值非常困难。所以就出现了很多最优化方法,梯度下降就是一个非常典型的例子。本文针对python的pytorch库中的自动求梯度进行了详细的解释Tensorpytorch里面的tensor可以用来存储向量或者标量。 torch tensor还可以指定数据类型,以及数据存储的位置(可以存在显存里,硬件加速
转载
2023-08-21 09:07:15
92阅读
基础知识tensors:tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorch中一般叫做dynamic computation graph(DCG)——即动态计算图。note1:在pytorch中,只有浮点类型的数才有梯度,故在方法四中指定np数组的类型为float类型。为什么torch.Te
转载
2023-10-22 08:27:07
314阅读
在深度学习中,我们经常需要对函数求梯度(gradient).本节将介绍如何使用PyTorch提供的autograd模块来自动求梯度.from torch import autograd,torch2.3.1 简单例子我们先来看一个简单例子:对函数求关于列向量的梯度.我们先创建变量,并赋初值.x = torch.arange(4).float().reshape(4,1) #
转载
2023-11-03 13:28:21
200阅读
我们最大的问题是, 我们如何训练模型来确定权重参数, 以最小化误差函数。让我们开始吧, 梯度下降如何帮助我们训练模型。首先, 当我们使用线性函数初始化模型时, 线性模型将从随机初始参数调用开始。它确实给了我们一个随机的初始参数。现在, 基于与该初始参数A相关的误差, 现在忽略偏差值。我们的动机是朝着使我们产生较小误差的方向运动。如果我们采用误差函数的梯度作为切线在当前值处的切线的斜率的导数, 则该
转载
2023-11-28 10:56:40
69阅读
Pytorch学习:Task2-3 梯度计算和梯度下降过程、PyTorch全连接层原理和使用1. 学习自动求梯度学习梯度下降原理1.线性回归 linear regression2.损失函数 loss function3. 最小均方法 Least mean square4. 梯度下降 -- 随机梯度下降SGD小练习2. 全连接层学习步骤一:全连接层原理学习1、全连接层的推导:2、全连接层的前向计算
转载
2023-08-21 19:54:02
164阅读
说明模型裁剪可分为两种,一种是稀疏化裁剪,裁剪的粒度为值级别,一种是结构化裁剪,最常用的是通道裁剪。通道裁剪是减少输出特征图的通道数,对应的权值是卷积核的个数。问题通常模型裁剪的三个步骤是:1. 判断网络中不重要的通道 2. 删减掉不重要的通道(一般不会立即删,加mask等到评测时才开始删) 3. 将模型导出,然后进行finetue恢复精度。步骤1,2涉及到非常多的标准和方法,这里不去深究。但是到
转载
2024-02-21 23:17:41
36阅读