1.冒泡排序冒泡排序的核心思想是相邻的两个数据进行比较,假设数列A有n个数据,先比较第1个和第2个数据,如果A1 > A2,则交换他们的位置,确保较大的那个数在右侧。接下来比较A2和A3,采用相同的规则,较大的数向右移动,最后会比较An-1 和An的大小,如果An-1 > An,那么交换他们的位置,这时,An是数列中的最大值。你肯定已经发现,经过这一轮比较后,数列仍然是无序的,但是没有
本文是一篇k-NN学习笔记,内容如下:一. k-NN简介二. k-NN原理三. 关于 k-NN的进一步讨论
3.1 K的大小怎么选择?3.2 怎么计算最近“邻居”?3.3 既然是监督学习,怎么训练?3.4 k-NN怎么用于回归?3.5 最后,为什么选择k-NN?四. k-NN应用-提高约会对象匹配(python)
4.1 读文件,解析特征向量和类别标签4.2 特征标准化4.3 画散点
转载
2023-12-20 09:03:39
196阅读
一、含义: 1.icp算法能够使两个不同坐标系下的点集匹配到一个坐标系中,这个过程就是配准,配准的操作就是找到从坐标系1变换到坐标系2的刚性变换。 2.icp的本质就是配准,但有不同的配准方案,icp算法本质是基于最小二乘的最优配准方法。该方法重复进行选择对应关系对,计算最优刚体变换,直到满足正确配准的收敛精度要求。 3.icp算法的目的就是找到待匹配点云数据与参考点云数据之间的旋转参数R和平移参
转载
2024-05-30 11:07:05
42阅读
不管是我在之前的博文中提到的SIFT、ORB等算法,其实真正匹配的结果都不会特别好,一旦视角上的变化比较大或者出现之前图像中没有出现的区域,就很容易产生误匹配。但是在实际应用中这些误匹配的点并没有对最终的匹配结果造成很大的影响,这是因为一般在进行匹配以后,都进行了去除误匹配点对的操作,这篇博文主要介绍的就是一种比较有名的RANSAC算法。 那么,首先来看一下这个算法。一、RANSAC算法介绍RA
转载
2024-06-24 10:01:02
78阅读
内容来自OpenCV-Python Tutorials 自己翻译整理目标: 学习匹配一副图片和其他图片的特征。 学习使用OpenCV中的Brute-Force匹配和FLANN匹配。暴力匹配(Brute-Force)基础暴力匹配很简单。首先在模板特征点描述符的集合当中找到第一个特征点,然后匹配目标图片的特征点描述符集合当中的所有特征点,匹配方式使用“距离”来衡量,返回“距离”最近的那个。对于Br
转载
2024-03-27 07:47:46
158阅读
目标在这章我们将看到如何将一张图片中的特征与其他图片进行匹配。我们会使用 OpenCV 里的 蛮力匹配器 以及 FLANN 匹配器。蛮力匹配器的基础蛮力匹配器很简单。它取一个特征在第一个集合中的描述符,然后去匹配在第二个集合中的所有其他的特征,通过某种距离计算。然后返回距离最近的那个。对于蛮力匹配器,首先我们必须创建一个蛮力匹配器对象,使用函数 cv.BFMatcher()。它需要两个可
转载
2024-09-01 17:09:41
232阅读
halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测、目标定位。下面以一个简单的例子说明基于形状特征的模板匹配。 为了在右图中,定位图中的三个带旋转箭头的圆圈。注意存在,位置、旋转和尺度变化。上halcon程序1 * This example program shows how to
转载
2024-03-08 21:08:30
449阅读
原文:目前图像匹配中,局部特征匹配占据了绝大部分,常用的局部特征匹配方法有Harris、SIFT、SURF、ORB等等,不同的特征点检测和匹配方法尤其独特的优势和不足; 特征点匹配经过Ransac算法优化后仍存在错误匹配点对,需要优化后的匹配结果进行量化评价; 特征点检测和匹配评价一般包括两个部分,分别为检测和匹配的评价。1、特征点检测评价repeatability(重复率)
转载
2023-11-26 13:52:43
227阅读
opencv下SIFT特征点的提取与匹配SIFT:尺度不变特征转换,是一种电脑视觉的算法用来侦测与描述影像中的局部特征。SIFT是基于图像外观的兴趣点而与图像的大小旋转无关,对于噪声、光线、微观的视角容忍度也极高。SIFT介绍Lowe将SIFT算法分解为四步:尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数识别潜在的对于尺度旋转不变的兴趣点。关键点定位:每个候选位置上,通过一个拟合精细
转载
2024-07-10 19:27:01
133阅读
目录0 特征点/关键点1 特征检测子1 Harris角点检测1.1 数学模型1.2 判断1.3 Harris角点响应1.4 Harris算子的处理流程2 LoG特征检测算子2.1 尺度空间2.2 LoG算子模型2.3 LoG算子尺度归一化 2.4 LoG算子的处理流程3 基于DoG的特征检测算子(SIFT-尺度不变特征变换)3.1 DoG近似LoG3.2 图像金字塔3.3 高
转载
2024-02-01 21:12:17
94阅读
# Python特征点提取与匹配
在计算机视觉领域,特征点提取与匹配是图像处理的重要步骤,这一技术广泛应用于物体识别、三维重建、图像拼接等多个领域。通过提取图像中的关键特征点,我们可以有效地进行图像比较和匹配。本文将介绍如何使用 Python 实现特征点提取和匹配,并以具体的代码示例来说明整个过程。
## 特征点提取
特征点提取的过程通常包括以下几个步骤:
1. 读取图像。
2. 转换为灰
特征筛选1. 方差分析特征筛选1.1 原理 & 手动实现1.2 scipy.stats.f_oneway(d1, d2)实现1.3 sklearn.feature_selection.f_classif(X, y)实现1.2 特征选择 sklearn.feature_selection.SelectKBest2. 特征递归消除(RFE)特征筛选2.1 原理2.2 sklearn实现 sk
转载
2024-07-07 09:38:25
0阅读
8 机器学习中的特征选择8.1 特征选择特征选择是机器学习实践中的一步, 帮你在所有特征中选择对结果贡献最多的特征。 显然, 使用不相关数据会减少模型的精确性, 尤其是线性算法:线性回归, 逻辑回归。为什么,因为线性算法一般使用梯度下降来寻找最优值, 那么如果特征无关, 方向就有可能误导。- 我的理解。以下是三个好处:减少过拟合。 这个话题其实比较大。 要理解什么是过拟合, 就是模型过于贴近训练
opencv图像特征点的提取和匹配(一)opencv中进行特征点的提取和匹配的思路一般是:提取特征点、生成特征点的描述子,然后进行匹配。opencv提供了一个三个类分别完成图像特征点的提取、描述子生成和特征点的匹配,三个类分别是:FeatureDetector,DescriptorExtractor,DescriptorMatcher。从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹
转载
2023-12-21 15:45:53
197阅读
本次主要讲解ORBSLAM2中的双目稀疏立体匹配函数ComputeStereoMatches(),这个函数主要是用于在左右目图像中寻找对应的匹配点对,并根据匹配点对来恢复特征点的深度,函数主要分为以下几步预分配内存// 为匹配结果预先分配内存,数据类型为float型
// mvuRight存储右图匹配点索引
// mvDepth存储特征点的深度信息
mvuRight = vector<flo
转载
2024-02-23 21:00:05
196阅读
特征提取与匹配---SURF;SIFT;ORB;FAST;Harris角点 匹配方法匹配函数 1. OpenCV提供了两种Matching方式: • Brute-force matcher (cv::BFMatcher) //暴力方法找到点集1中每个descriptor在点集2中距离最近的descriptor;找寻到的距离最小就认为匹配
KNN学习KNN的基础知识原始数据的距离图像打印类型3的第70个数据 与类型3,4,6,7四种不同类型的第1个进行对比欧氏距离欧几里得度量 Euclidean Metric,Euclidean Distance:指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。比如:在二维和三维空间中的欧氏距离就是两点之间的实际距离。曼哈顿距离KNN的计算方法KNN数据的预处理KNN数
转载
2024-03-24 16:00:06
61阅读
刚好最近在做项目,老师让查模板匹配与特征点匹配的相关知识,搜了很多博客,整理成word文档,顺便也来发个博客。 模板匹配模板匹配是一种最原始、最基本的识别方法。简单来说,模板匹配就是用一幅已知的模板图片在目标图片上依次滑动,每次滑动都计算模板与模板下方子图的相似度。如果是单个目标的匹配,只需要取相似度最大值所在的位置就可以得到匹配位置。如果要匹配多个目标,只需要设定阈值,只要相似度大于阈
转载
2024-01-12 19:09:15
166阅读
特征匹配要是遇到误匹配时,如何筛选处理?答案就是用ransac算法进行过滤。 RANSAC算法背后的核心思想是:支撑集越大,所计算矩阵正确的如果一个(或多个)随机选取的匹配项是错误的,那么计算得到的基础矩的支撑集肯定会很小。反复执行这个过程,最后留下支撑集最大的矩阵作因此我们的任务就是随机选取8个匹配项,重复多次,最后得到8个大的支撑集。如果整个数据集中错误匹配项的比例不同,那么选取到8各不相同
文章目录内容:SIFT:SURF:ORB:代码 内容:• 了解OpenCV中实现的SIFT, SURF, ORB等特征检测器的用法,并进行实验。将检测到的特征点用不同大小的圆表示,比较不同方法的效率、效果等。 • 了解OpenCV的特征匹配方法,并进行实验。SIFT:SIFT算法的过程实质是在不同尺度空间上查找特征点(关键点),用128维方向向量的方式对特征点进行描述,最后通过对比描述向量实现目
转载
2024-03-01 09:25:43
240阅读