SVM(一)简介:支持向量机(Support Vector Machine,SVM)是一个功能强大且全面的机器学习模型,它能够执行线性或非线性分类、回归,甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一,SVM特别适用于中小型复杂数据集的分类。线性SVM分类SVM的基本思想可以用一些图来说明。左图显示了三种可能的线性分类器的决策边界。其中虚线所代表的模型表现非常糟糕,甚至都无法正确实现分类
python与机器学习实战 [何宇健] [2017.7第一版]机器学习绪论......机器学习常用术语......使用python进行机器学习......python一些第三方库的安装......第一个机器学习样例该问题来自Coursera上的斯坦福大学机器学习课程:现有47个房子的面积和价格,需要建立一个模型对新的房价进行预测即有这样的理解:输
转载
2023-10-16 19:20:12
208阅读
最近在做电池续航测试,不同型号参数的动力电池可以跑40-70多公里,开个小电动出去测里程,累的要死,正好要到数据集,弄个模型预测一波,只用输入电池参数,就可以预测里程,舒服~ (实际样本太少,不足100个,预测效果与实际测量在上下3公里左右波动) 华丽的分割线----------------------------------------------------------------------
转载
2024-06-03 09:40:24
30阅读
目录1. 简介2. 对偶问题3. 核函数3.1 核函数的一些定理 1. 简介支持向量: 下图为训练样本集 D = {(Xl ,Yl) , (X2,Y2) ,. . ., (Xm,Ym)}, Yi ε{-1,十1}在坐标系中的分布,粗线为划分超平面: 将不同类别的样本分开 则有 &nbs
转载
2024-05-30 07:35:27
63阅读
1.支持向量机 概述支持向量机(Support Vector Machines, SVM):是一种监督学习算法。支持向量(Support Vector)就是离分隔超平面最近的那些点。机(Machine)就是表示一种算法,而不是表示机器支持向量机(SVM,也称为支持向量网络),是机器学习中获得关注最多的算法没有之一。它源于统计学习理论, 是我们除了集成算法之外,接触的第一个强学习器。它有多强呢? 从
转载
2024-04-16 10:25:11
43阅读
SVM--简介
支持向量机(Support Vector Machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。 在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。由
转载
2024-03-14 18:02:50
46阅读
1. 前言最近又重新复习了一遍支持向量机(SVM)。其实个人感觉SVM整体可以分成三个部分:1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日对偶(Lagrange Duality),支持向量(Support Vector),核函数(Kernel)的引入,松弛变量的软间隔优化(Outliers),最小序列优化(Sequential Minima
转载
2023-07-20 12:55:30
196阅读
支持向量机英文名称Support Vector Machine简称SVM,它是由前苏联科学家Corinna Cortes在1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.SVM是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解. 在机器学习中,使用支持
转载
2023-10-17 23:25:23
112阅读
这里是《神经网络与机器学习》以及一些《统计学习方法》的笔记。(主要是《神机》坑爹没给SMO或者其他求解算法)大概知道为啥《神机》这本讲神经网络的书会把SVM放进去了,从结构上看,SVM跟感知机,使用了核方法的SVM跟单隐藏层的神经网络确实非常相似,而当年Vapnic正式提出SVM的论文题目就叫“支持向量网络”。(虽然主要是因为当时神经网络正火而被要求整这名的)支持向量机(Support Vecto
转载
2024-07-30 17:09:39
117阅读
0. 介绍支持向量机,support vector machines,SVM,是一种二分类模型。策略: 间隔最大化。这等价于正则化的合页损失函数最小化问题。学习算法: 序列最小最优化算法SMO分类 线性可分支持向量机,线性支持向量机、非线性支持向量机。1、线性可分支持向量机特点: 训练数据线性可分;策略为硬间隔最大化;线性分类器。模型 分类决策函数:分类超平面:定义超平面关于样本点的函数间隔为:定
转载
2023-09-15 22:35:28
106阅读
本文描述了训练支持向量回归模型的过程,该模型用于预测基于几个天气变量、一天中的某个小时、以及这一天是周末/假日/在家工作日还是普通工作日的用电量。关于支持向量机的快速说明支持向量机是机器学习的一种形式,可用于分类或回归。尽可能简单地说,支持向量机找到了划分两组数据的最佳直线或平面,或者在回归的情况下,找到了在容差范围内描述趋势的最佳路径。对于分类,该算法最大限度地减少了对数据进行错误分类的风险。对
转载
2023-07-31 19:01:11
163阅读
本系列基本不讲数学原理,只从代码角度去让读者们利用最简洁的Python代码实现机器学习方法。前面的决策树,随机森林,梯度提升都是属于树模型,而支持向量机被称为核方法。其主要是依赖核函数将数据映射到高维空间进行分离。支持向量机适合用于变量越多越好的问题,因此在神经网络之前,它对于文本和图片领域都算效果还不错的方法。学术界偏爱支持向量机是因为它具有非常严格和漂亮的数学证明过程。支持向量机可以分类也可以
转载
2023-12-11 21:49:16
75阅读
1.支持向量机定义在机器学习领域,支持向量机 SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。给出一个简单的线性分类问题,要用一条直线,将下图 13.13 中圆形的点和三角形的点分开,这样的直线有无数条,例如图中画出的两条线都能进行分类。这些将类别分离的曲线称为超平面。已有的训练数据中,每个元素距离分离超平面都有一个距离。在添
转载
2023-07-04 17:24:43
205阅读
1 前备知识在这里简略讲一下使用方法,具体原理和推导公式不展开讲了。1.1 拉格朗日乘子法拉格朗日乘子法就是求函数在约束条件下的极值的方法。其主要思想是将约束条件函数与原函数联立,从而求出使原函数取得极值的各个变量的解。首先看下面的例题: 第一步将每个约束条件都分配一个乘子,在将目标函数和所有的约束函数相加,得到函数: 其中每个约束条件的右边都是0,所以. 第二步对求偏导: 令偏导数等于0,用表示
转载
2024-06-05 21:06:09
102阅读
参考url:https://jakevdp.github.io/PythonDataScienceHandbook/05.07-support-vector-machines.html支持向量机(support vector machine,SVM)是非常强大、灵活的有监督学习算法,既可以用于分类、也可用于回归。1、支持向量机的由来 判别分类方法:不再为每类数据建模,而是用一条分割线(二维空间中
转载
2023-08-03 20:36:43
192阅读
支持向量机算法1 概述2 算法特点3 算法原理3.1 距离计算3.2 分类器的求解优化3.2.1 要优化的目标3.2.2 目标函数3.3 软间隔最大化3.4 核函数4 总结5、python实现 1 概述 支持向量机(support vector machines,SVM)主要作为一种二分类模型。它的强大之处在于既可以用作线性分类器又可以作为非线性分类器。2 算法特点优点:泛化错误率低,计算开销
转载
2023-11-17 21:02:09
107阅读
1 数据样本集的介绍这篇文章是根据《机器学习实战》一书的实例进行代码的详细解读,我在查找这方面的资料没有人对支持向量机算法 python 实现的详细说明,我就把我在看代码时的思路和代码详细注解。如果存在不足,欢迎给我留言相互探讨。好了,废话不多说,正文开始。。。首先我们使用的数据是二维的坐标点,还有对应的类标号(1 或 -1)。数据集以 “testSet.txt” 命名,如下代码段中:
转载
2023-08-11 17:44:26
141阅读
一、支持向量机简介支持向量机(support vector machines,SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。当训练数据线性可分时,通过硬间隔最大化(hard margin maximization),学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机
转载
2023-12-01 18:49:35
67阅读
下面是使用 scikit-learn 库中的 SVM 模型的示例代码:from sklearn import svm
from sklearn.datasets import make_classification
# generate some example data
X, y = make_classification(n_features=4, random_state=0)
# fi
转载
2023-08-20 23:54:09
207阅读
pytorch 基础 一.张量(Tensor) PyTorch 的官方介绍是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构件是张量,所以我们可以把 PyTorch 当做 NumPy 来用,PyTorch 的很多操作好 NumPy 都是类似的,但是因为其能够在 GPU 上运行,所以有着比 NumPy 快很多倍的速度。 0维张量/标量 标量是一个数字 1维张量/向量 1维张量称为“向量”。
转载
2023-11-30 17:41:40
92阅读