本次要整理的内容是基于OpenCV4学习笔记(12)中的三种模糊方式,首先为一张图像添加噪声,分别添加椒盐噪声和高斯噪声,然后通过均值模糊、高斯模糊和中值滤波来分别对比这三种滤波方式对不同种类噪声的抑制效果如何。最后再记录一种新的滤波方式:非局部均值滤波。对图像添加噪声 噪声主要有椒盐噪声和高斯噪声。其中椒盐噪声就是在图像上随机分布的一些黑白噪声点,椒噪声就是黑色噪声点,盐噪声就是白色噪声点,可以
转载 2023-12-11 22:26:20
124阅读
# 使用Python和OpenCV识别图像的噪声类型 在图像处理领域,噪声是指在图像信号中引入的任何多余或不必要的信息。理解并识别图像中的噪声类型是提高图像质量和分析结果的重要步骤。本篇文章将指导你如何使用Python和OpenCV实现对图像噪声类型的识别。文章将分成几个清晰的步骤,帮助你逐步完成任务。 ## 流程概述 首先,我们将整个过程拆解为几个步骤,并使用表格展示每一步的具体操作。
原创 9月前
160阅读
使用VAD技术清理wav文件中的静音片段介绍folder construction获取所有“说话人”名称创建目的文件夹(与说话人名称保持一直)**划重点**VAD处理部分分步执行导入库导入一个语音文件for循环 其中is_speech用来判断是否为静音部分~展示一下有用信息,并绘图拼接黄线部分,并且打印在cell中事先听一下~整体执行(批量处理)总结 介绍VAD技术,全称为Voice Activ
本文介绍如何利用Python自行生成随机序列,实现了 Whichmann / Hill 生成器。参考:  [1]Random Number Generation and Monte Carlo Methods(P.47)  [2]简单产生白噪声的算法  [3]各种分布白噪声的产生 基本原理   本文粗略将随机数分为两种:均匀分布以及非均匀分布。均匀分布随机数通过非线性变换可得到
转载 2023-06-29 08:53:24
191阅读
Python-多维矩阵添加高斯噪声 文章目录Python-多维矩阵添加高斯噪声步骤一:创建多维矩阵涉及知识点1. 利用numpy创建多维随机矩阵2. 查看变量的数据类型3. 将变量的数据类型由float64转换为float32步骤二:定义添加高斯噪声的函数方法一:向多维矩阵中的元素逐个添加高斯噪声涉及知识点1. 获取变量的大小2. 生成具有高斯分布的随机浮点数方法二:定义一个与多维矩阵等大的高斯噪
转载 2023-09-12 09:58:53
793阅读
一。简单介绍几种常见的噪声、关于白噪声、高斯噪声和椒盐噪声噪声: 白噪声是指功率谱密度在整个频域内均匀分布的噪声。 所有频率具有相同能量的随机噪声称为白噪声。白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的
1.skimage的API noise_gs_img = util.random_noise(img,mode='gaussian') # gaussian 高斯加性噪声。 noise_salt_img = util.random_noise(img,mode='salt')#盐噪声,随机用1替换像素。属于高灰度噪声。 noise_pepper_img = util.random_n
在早先的章节里,我们看到很多图像平滑技术如高斯模糊,Median模糊等,它们在移除数量小的噪音时在某种程度上比较好用。在这些技术里,我们取像素周围的一小部分邻居,做一些类似于高斯平均权重,中值等替换掉中间的元素。简单说,移除一个像素的噪音是基于本地邻居的。噪音有一个属性,噪音一般被认为是具有零平均值的随机变量。假设一个像素噪音,p = p0 + n, 其中p0是像素的真实值,n是那个像素的噪音。你
你的序列均值为零吗?方差随时间变化吗?值与延迟值相关吗?你可以用一些工具来检查你的时间序列是否为白噪音:创建一个折线图。检查总体特征,如变化的平均值,方差或延迟变量之间的明显关系。计算汇总统计。对照序列中有意义的连续块的均值和方差,检查整个序列的均值和方差(如年、月、日)。创建一个自相关的图。检查延迟变量之间的总体相关性。白噪声时间序列的例子在本节中,我们将使用Python创建一个高斯白噪声序列并
一、简介(主要特点 + 适用场景 + 去噪方法)噪声类型类型属性分布模型主要特点适用场景去噪方法均匀噪声加性噪声均匀分布灰度扰动在指定范围内均匀分布,模拟广义背景噪声图像增强、噪声容忍测试、合成训练样本线性滤波(如均值滤波、GaussianBlur)高斯噪声加性噪声正态分布灰度值围绕均值上下波动,模拟传感器热噪声和读取误差图像去噪、滤波算法验证(如高斯滤波、双边滤波)高斯滤波、双边滤波、非局部均值
这篇也是很久之前写的,因为是之前的实验,然后写这篇的时候,因为python写的,而且是自己写的函数,完全就是根据定义和式子来写的代码,所以的话时间复杂度很高,跑的时候会比较慢,需要多等一会,不是代码问题添加椒盐噪声函数主要采用随机数来确定现在所在的像素点是否要添加噪声,由椒盐噪声阈值来确定,这个值可以自己定,随机生成的随机数如果大于这个阈值那么添加胡椒噪声,如果小于这个阈值那么添加盐噪声,不难,代
转载 2023-10-19 11:06:33
100阅读
几种常见噪声高斯噪声概率密度函数服从高斯分布的噪声。 产生原因: 1)图像传感器在拍摄时市场不够明亮、亮度不够均匀; 2)电路各元器件自身噪声和相互影响; 3)图像传感器长期工作,温度过高代码实现:def gasuss_noise(image,mean=0,var=0.001): ''' 手动添加高斯噪声 mean : 均值 var : 方差 '''
一、随机噪声、高斯噪声和椒盐噪声1、效果展示  2、代码部分import cv2 import numpy as np from PyQt5.QtCore import QThread import random class Noise(QThread): def __init__(self): super(Noise, self).__init__(
转载 2023-06-16 15:59:51
292阅读
一、什么是图像噪声噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。二、噪声来源—两个方面(1)图像获取过程中两种常用类型的图像传感器CCD和CMOS采集图像过程中,由于受传感器材料属性、工作环境、电子元器件和电路结构等影响,会引入各种噪声,如电阻引起的热噪声、场效应管的沟道
1. 白噪声主要是高斯白噪声。2. 为什么是高斯白噪声?  高斯白噪声:1)这个噪声它是一个随机信号。2)“白”是指其功率谱的常数,这样他的自相关函数是狄拉克函数(冲激函数),由于它的自相关函数是冲激函数,这说明信号只与它自己相关,它的时延信号就相关,也可以形象地说这种信号是“翻脸不认人”;功率谱是常数,人们形象的用白色光包含七彩光来比喻,这种频谱又称为“白谱”。3)“高斯”是指这个噪声信号的信号
转载 2023-07-01 17:18:22
281阅读
注释很重要Matlab对含噪声图像的滤波操作。噪声:高斯噪声(正态分布)均匀噪声用到的滤波器:高斯滤波器盒型滤波器中值滤波器用到的两种方法:直接conv2 fft2%%C1 figure; tiledlayout(1,3); img = imread("\LenaG.bmp"); fft = fft2(img); nexttile; imshow(img); title("LenaG"); fft
转载 2023-11-14 09:21:52
50阅读
目录1.椒盐噪声2.高斯噪声1.椒盐噪声椒盐噪声噪声幅度基本相同(0或255),出现位置随机def add_noise_salt_pepper(img, salt, pepper=None): """添加椒盐噪声 :param img:输入灰度图像 :param salt:salt的概率 :param pepper:pepper的概率 :return:im
教程 | 理解和实现自然语言处理终极指南(附Python代码) 机器之心 主题 自然语言处理 Python 根据行情,只有21%的数据目前是结构化的。谈话、发推文、在 WhatsApp上发信息以及其他各种各样的活动,都在持续不断的产生数据。而大多数这种数据都是以非结构化的文本形式存在的。最著名的例子有:社交媒体上的推文/帖子、用户到用户的聊天记录、新闻
 音频时域波形具有以下特征:音调,响度,质量。我们在进行数据增强时,最好只做一些小改动,使得增强数据和源数据存在较小差异即可,切记不能改变原有数据的结构,不然将产生“脏数据”,通过对音频数据进行数据增强,能有助于我们的模型避免过度拟合并变得更加通用。  我发现对声波的以下改变是有用的:Noise addition(增加噪音)、增加混响、Time shifting(时移)、Pitch shiftin
教程 | 理解和实现自然语言处理终极指南(附Python代码) 时间 2017-02-16 14:41:39 机器之心 主题 自然语言处理 Python 根据行情,只有21%的数据目前是结构化的。谈话、发推文、在 WhatsApp上发信息以及其他各种各样的活动,都在持续不断的产生数据。而大多数这种数据都是以非结构化的文本形式存
  • 1
  • 2
  • 3
  • 4
  • 5