Learn CUDA Programming This is the code repository for Learn CUDA Programming, published by Packt. A beginner's guide to GPU programming and parallel computing with CUDA 10.x and C/C++ What is this bo
转载 2023-07-01 20:56:24
58阅读
Python编写简单的学生管理系统一共两个文件,其中一个定义函数,另一个是主程序,调用函数,运行程序CMS.py''' 编写“学生信息管理系统”,要求如下: 必须使用自定义函数,完成对程序的模块化 学生信息至少包含:姓名、年龄、学号,除此以外可以适当添加 必须完成的功能:添加、删除、修改、查询、退出 ''' # 定义一个列表用来存储多个学生信息 stuList = [] # 定义系统菜单显示函
第4.1课 卷积操作用共享内存的方法进行矩阵的卷积操作,卷积核为[1,1,1; 1,-8,1; 1,1,1]为了避免一个block的边界点无法计算卷积的值,有以下两种方法:1、设置n*n大小的block,把对应坐标的矩阵数据读取到共享内存里,然后其中的(n-2)*(n-2)个线程进行卷积运算2、设置n*n大小的block,分两次读取矩阵,把(n+2)*(n+2)的矩阵数据读取到内存里,然后进行卷积
1.安装配置python3.5环境去官网下载python3.5,直接安装记得安装路径,然后加入Path环境我的是默认安装的,所以加入Path环境路径为:C:\Users\Administrator\AppData\Local\Programs\Python\Python35C:\Users\Administrator\AppData\Local\Programs\Python\Python35\S
pythonCUDA扩展有不错的支持,CUDA通过大量线程的并行化可以大幅提高代码计算速度,一般python常用numba、pycuda套件来支持CUDA扩展。numba通过JIT编译器只需将numba装饰器应用到python函数中即可实现CUDA加速,而pycuda需要基于C/C++编写kernel,其移植性、直观性更佳,这里主要介绍pycuda的使用。1.向量加法示例使用了1个block,b
转载 2023-07-02 21:03:24
150阅读
这一期我们来介绍如何在Windows上安装CUDA,使得对图像数据处理的速度大大加快,在正式的下载与安装之前,首先一起学习一下预导知识,让大家知道为什么使用GPU可以加速对图像的处理和计算,以及自己的电脑是否可以使用GPU加速。写在前面:在深度学习中,我们常常要对图像数据进行处理和计算,而处理器CPU因为需要处理的事情多,并不能满足我们对图像处理和计算速度的要求,显卡GPU就是来帮助CPU来解决这
目录目录1、安装pycahrm 2、配置 cuda3、下载cuDNN1、安装pycahrm下载 :PyCharm: the Python IDE for Professional Developers by JetBrains2、配置 cudaCUDA 是 NVIDIA 发明的一种并行计算平台和编程模型。它通过利用图形处理器 (GPU) 的处理能力,可大幅提升计算性能。CUDA(Comp
转载 2023-11-03 19:56:28
299阅读
1. 安装环境系统环境:win10虚拟环境:anaconda3语言:pythontensorflow2.2.0 或者 pytorch1.5.12. 步骤如果电脑上什么环境都没有安装,需要遵循五步。 第一,安装anaconda3环境,提供python版本管理和包管理工具,能够创造一个单独的虚拟环境。 第二,更新GPU驱动,驱动可以通过自动更新也可以通过手动更新,但一般手动更新才能够更新到最新的版本中
转载 2023-10-17 12:11:09
492阅读
目录 目录前言CUDA编程模型基础向量加法实例矩阵乘法实例小结参考资料 前言2006年,NVIDIA公司发布了CUDACUDA是建立在NVIDIA的CPUs上的一个通用并行计算平台和编程模型,基于CUDA编程可以利用GPUs的并行计算引擎来更加高效地解决比较复杂的计算难题。近年来,GPU最成功的一个应用就是深度学习领域,基于GPU的并行计算已经成为训练深度学习模型的标配。目前,最新的CUDA版本
转载 2024-08-12 10:54:18
48阅读
# PythonCUDA的结合:CUDA Toolkit版本的选择与使用 在深度学习和高性能计算领域,GPU加速已然成为一种趋势。而NVIDIA的CUDA(Compute Unified Device Architecture)是实现GPU加速的重要平台。很多Python程序员借助CUDA来提升运算速度,尤其是在进行矩阵运算和深度学习模型训练时。本文将介绍如何在Python中使用CUDA,包括
原创 2024-10-10 03:48:39
523阅读
        由于训练超分辨率图像重建,需要在Pytorch的框架下进行模型训练,开始着手于Pytorch的安装。跌跌撞撞的尝试了好多种方法,以下总结以下最有效的菜鸟级别的Pytorch框架的搭建以及安装。1、CUDA的安装与测试1.1 cuda适配版本查询        CU
转载 2023-06-21 20:39:16
246阅读
环境:Ubuntu 20.04 +pytorchGPU版本一、GPU1、查看CPU是否可用2、查看CPU个数3、查看GPU的容量和名称4、清空程序占用的GPU资源5、查看显卡信息6、清除多余进程二、GPU和CPU1、GPU传入CPU1.1 另一种情况2、CPU传入GPU3、注意数据位置对应三、Numpy和Tensor(pytorch)1、Tensor转成Numpy2、Numpy转成Tensor3
转载 2023-12-28 16:03:05
163阅读
python上的CUDA已经广泛应用在TensorFlow,PyTorch等库中,但当我们想用GPU计算资源实现其他的算法时,不得不自己调用CUDApython接口完成编程,以下是我在python上,利用GPU完成高斯过程计算的经验。 【文首劝退】如果是想用CUDA完成较复杂的功能和算法,还是用C++实现吧。。。python的话我感觉很多已定义好的库无法正常调用,虽然numpy的很多属
得益于过去数十年间计算能力的提升,深度学习,计算机视觉,生物医疗等众多领域都得到了飞速发展,但与此同时,各行业对计算能力的要求也越来越高,单一的串行计算已经难以满足计算需求,而并行计算无疑是当下提升计算能力的最佳方案。作为当前最主流的并行化程序编程方法之一,CUDA 能实现在 CPU 和 GPU 上的异构编程,有效地管理可用资源并提供最大化的执行速度增益。在当前火热的高性能计算、人工智能等领域,C
转载 2023-07-31 23:38:09
142阅读
近期由于毕设需要使用Yolo,于是经过两天捣腾,加上看了CSDN上各位大佬的经验帖后,成功搭建好了GPU环境,并能成功使用。因而在此写下这次搭建的历程。万事开头难,搭建环境很费时间,如果一开始版本不对应,到后面就要改来改去,很麻烦。首先要注意以下事项:1. 你的显卡驱动版本。2. 你的显卡算力。3. Cuda和Cudnn版本对应问题。4. Torch和Python对应关系。我个人配置如下:Pyth
Python学习工具安装第六期 — Windows下 Cuda的下载与安装预导知识这一期我们来介绍如何在Windows上安装CUDA,使得对图像数据处理的速度大大加快,在正式的下载与安装之前,首先一起学习一下预导知识,让大家知道为什么使用GPU可以加速对图像的处理和计算,以及自己的电脑是否可以使用GPU加速。写在前面:在深度学习中,我们常常要对图像数据进行处理和计算,而处理器CPU因为需要处理的事
系列文章目录win10下Opencv源码编译支持CUDA加速的Python环境,超级详细教程!win10下对编译完成后opencv_cuda进行移植 文章目录系列文章目录环境准备cmake编译注意事项vs2015编译测试结果对比 环境准备1 vs2015 2 anaconda+Python3.7.4+numpy 3 cuda和cudnn环境(cuda10.0+cudnn7.6.5) 4 cmake
转载 2023-09-05 11:04:31
121阅读
很多时候,我们是基于python进行模型的设计和运行,可是基于python本身的速度问题,使得原生态python代码无法满足生产需求,不过我们可以借助其他编程语言来缓解python开发的性能瓶颈。这里简单介绍个例子,以此完成如何先基于cuda编写瓶颈函数,然后在将接口通过cpp进行封装,最后以库的形式被python调用。1 cpp+python首先,介绍下如何python调用cpp的代码。这里极力
超详细的nvidia + cuda + cudnn + anaconda + python安装配置流程 一. 安装nvidia二. 安装cuda 10.2三. 安装cudnn四. 安装anaconda五. 设置python环境【参考】 亲试N遍,真的好用,超级简单!!!一. 安装nvidia具备条件:使用root权限进行操作修改root密码:sudo passwd 登录root账户: su ro
转载 2024-02-23 22:08:52
68阅读
一、首先要看看你的显卡是不是NVIDA的,是的话支不支持CUDA。只要支持,那你最好把驱动更新到最近一年内的版本。1、CUDA支持的GPUs | NVIDIA Developer 这个网站有点慢,耐心点 2、查看一下你的驱动版本号够不够,windows下一定要下载最低CUDA10.1的版本!之前下载CUDA10.0的卸载了吧。二、下载安装CUDA10.1和对应版本CuDNN安装之前要先卸载之前的版
转载 2024-05-06 17:54:21
186阅读
  • 1
  • 2
  • 3
  • 4
  • 5