引用出自Bookc的博客,链接在此http://bookc.github.io/2014/05/08/my-summery-the-book-cuda-by-example-an-introduction...
转载
2016-09-09 23:40:00
320阅读
3评论
一个 GPU 包含多个 Streaming Multiprocessor ,而每个 Streaming Multiprocessor 又包含多个 core 。 Streaming Multiprocessors 支持并发执行多达几百的 thread 。 一个 thread block 只能调度到一个 Streaming Multiprocessor 上运行
转载
2024-05-23 13:31:48
130阅读
在支持CUDA的设备上运行什么?确定应用程序的哪些部分在设备上运行时应考虑以下问题:该设备非常适合可同时并行运行在多个数据元素上的计算。 这通常涉及大数据集(例如矩阵)的算术,其中可以同时在数千甚至数百万个元素上执行相同的操作。 这是CUDA良好性能的要求:软件必须使用大量(通常为数千或数万)并发线程。 并行运行大量线程的支持来自CUDA使用上述轻量级线程模型。为了获得最佳性能,设备上运行的相邻线
转载
2024-04-26 10:51:09
107阅读
"CUDA学习:CUDA9.0+VS2017+win10详细配置"
原创
2021-08-27 09:26:32
273阅读
前言 在并发,多线程环境下,同步是一个很重要的环节。同步即是指进程/线程之间的执行顺序约定。 本文将介绍如何通过共享内存机制实现块内多线程之间的同步。 至于块之间的同步,需要使用到 global memory,代价较为高昂,目前使用的情况也不多,就先不介绍了。块内同步函数:__syncthreads () 线程调用此函数后,该线程所属块中的所有线程均运行到这个调用点后才会继续往下运行。代码
转载
2024-03-20 20:14:56
293阅读
如果官网下载不顺利,可以到百度网盘下载1.安装显卡驱动查看你的显卡信息:lspci | grep -i nvidia。根据你的显卡型号到官方中文驱动下载页面下载驱动。该页面有安装指导。
禁用Nouveau驱动,重启。Ctrl+Alt+F1进入文本模式,输入sudo service lightdm stop关闭X服务器,输入sudo apt-get autoremove --purge nvidia
转载
2024-08-20 09:53:49
336阅读
cuda、cudnn环境配置一、cuda、cudnn概念及关系1、什么是cuda?CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题2、什么是cudnn?NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开
转载
2024-07-06 12:03:35
325阅读
CUDA的安装和环境配置 第一步,首先查看自己的电脑是不是英伟达显卡的,不是的话就装不了! 第二,电脑上要有visual studio,没有的话,可以登录Csdn—https://msdn.itellyou.cn/这个网址上面下一个, 具体下载那个看自己的需求(建议下个2010版本的) 第三就是下载cuda了:进这个网址https://developer.nvidia.com/cuda-downl
转载
2023-06-30 22:30:28
182阅读
本文系统ubuntu18 首先明白三个概念。GPUCUDA driverCUDA Toolkit这三个都有各自的版本,以至于适配起来很麻烦。GPU就是我们的硬件。每个电脑的显卡型号不同,比如我的是GeForce 1070TI。这个都是买电脑的时候就确定的,没什么可说。查看版本命令:lspci | grep -i vgaCUDA driverCUDA driver是驱动程序,驱动用于电脑正常显示图片
转载
2023-12-23 22:39:20
94阅读
前言:我的问题是这样的,在b站跟着博主一起在Anaconda环境下安装gpu版本的pytorch,步骤都是一样,但是最后利用torch.cuda.is_available()验证的时候,返回值一直都是False。在虚拟环境中利用conda list 查看已下载的pytorch的信息,显示的是cpu版本的,这样安装卸载几个来回,终于在csdn上找到了答案,问题已经成功解决。
转载
2023-10-06 18:44:55
765阅读
问题描述: 配置vedadet 环境时报错OSError: CUDA is required to compile vedadetNo CUDA runtime is found, using CUDA_HOME=’/usr/local/cuda:/usr/local/cuda’Compiling nms_ext without CUDA解决:export FORCE_CUDA="1"
原创
2021-10-22 17:07:11
10000+阅读
并行就是让计算中相同或不同阶段的各个处理同时进行。
目前有很多种实现并行的手段,如多核处理器,分布式系统等,而本专题的文章将主要介绍使用 GPU 实现并行的方法。
前言 并行就是让计算中相同或不同阶段的各个处理同时进行。 &n
转载
2023-06-30 22:31:06
263阅读
一、常用命令1.查看NVIDIA 版本 nvidia-smi2.查看CUDA版本 nvcc -V二、下载安装相关资源1.CUDA Toolkit CUDA Toolkit Archive | NVIDIA Developer选择自己需要的版本点击后进入下图界面 (1)在浏览器复制wget地址,进行下载
转载
2023-09-06 21:55:38
110阅读
>> NVIDIA CUDA 4.1 Compiler Now Built on LLVMLLVM可是个好东西,在Apple力顶之下,这几年真是发展快快。LLVM是知名的开源编译器技术基础架构,其模块设计可方便的加入新语言和处理器架构支持,目前支持C/C++、Objective-C、Fortran、Ada、Haskell、Java bytecode、Python和Ruby等
目录硬件模型:线程模型:内存模型:SIMT架构:Warp(并行线程组):基本概念:warp的执行方式:SIMT与SIMD的区别:Volta架构:注意:性能优化:核心原则:实现最大化利用率:最大化存储吞吐量:最大化指令吞吐量:最小化内存抖动:学习资料:前记:呜呜呜,最近事情太多了,看了都没写,寄!-----------------------------------博主:mx硬件模型: 如上图
转载
2024-04-24 23:39:40
145阅读
目录目录1、安装pycahrm 2、配置 cuda3、下载cuDNN1、安装pycahrm下载 :PyCharm: the Python IDE for Professional Developers by JetBrains2、配置 cudaCUDA 是 NVIDIA 发明的一种并行计算平台和编程模型。它通过利用图形处理器 (GPU) 的处理能力,可大幅提升计算性能。CUDA(Comp
转载
2023-11-03 19:56:28
299阅读
CUDA全称(Compute Unified Device Architecture),是 NVIDIA开发的一款用于驱动GPU的统一计算设备架构,包含了许多底层API函数,通常用于GPU的并行计算开发。CPU与GPU的的硬件架构区别两者最大不同在于:CPU有控制单元Control,和算数逻辑单元ALU,负责逻辑性强的事务处理;GPU具有大量的并行化现成网格单元,专注于执行高度线程化的并行处理任务
转载
2024-02-04 01:06:40
448阅读
CUDA底层驱动API 文章目录CUDA底层驱动API1. 上下文2. 模块3. 核函数的执行4. 运行时和驱动程序 API 之间的互操作性5. 驱动入口5.1. 介绍5.2. 驱动函数类型5.3. 驱动函数检索5.3.1. 使用驱动API5.3.2. 使用运行时API5.3.3. 检索每个线程的默认流版本5.3.4. 访问新的 CUDA 功能 本附录假定您了解 CUDA 运行时中描述的概念。
转载
2023-11-13 21:51:07
222阅读
NVIDIA英伟达驱动在安装之前,先更改数据源,否则安装过程中下载会非常慢。从系统设置中,点击Software&update,进入后选择source code,从download from中选择的镜像源,此处可以看个人习惯选择,或者点击best choice选择系统推荐,此处我选择的是镜像源,选择后按照指令输入系统权限(装系统时,自己编辑的),点击close,等待片刻即可,从文
转载
2024-05-16 20:24:48
1796阅读
# Python与CUDA的结合:CUDA Toolkit版本的选择与使用
在深度学习和高性能计算领域,GPU加速已然成为一种趋势。而NVIDIA的CUDA(Compute Unified Device Architecture)是实现GPU加速的重要平台。很多Python程序员借助CUDA来提升运算速度,尤其是在进行矩阵运算和深度学习模型训练时。本文将介绍如何在Python中使用CUDA,包括
原创
2024-10-10 03:48:39
520阅读