基于分词标签的中文短文本相似度最近接触到了一些关于中文短文本相似度的算法,将它们总结在此:中文编辑距离基于词频的余弦相似度Python difflibgithub传送门:https://github.com/gongpx20069/DIYNLP1.0 在相似度算法之前的分词处理在比较两个字符串str1和str2之前,我们需要对它们进行分词处理,分词后变成两组标签(我认为分词后的标签具有原子性,不可
转载
2023-11-24 14:32:36
88阅读
步骤分词、去停用词 词袋模型向量化文本 TF-IDF模型向量化文本 LSI模型向量化文本 计算相似度理论知识两篇中文文本,如何计算相似度?相似度是数学上的概念,自然语言肯定无法完成,所有要把文本转化为向量。两个向量计算相似度就很简单了,欧式距离、余弦相似度等等各种方法,只需要中学水平的数学知识。那么如何将文本表示成向量呢?词袋模型最简单的表示方法是词袋模型。把一篇文本想象成一个个词构成的,所有词放
转载
2023-11-27 13:50:56
97阅读
文章目录1. 余弦相似度2. TF-IDF模型2.1 词频TF的计算方法2.2 反文档频率IDF的计算方法2.3 TF-IDF的计算方法3. 基于语义相似度的计算 —— DSSM4. LSI/LSA模型5. LDA模型6. 编辑距离计算7. 杰卡德系数计算8. Word2Vec计算9. BM25 NLP、数据挖掘领域中,文本分析是一个很重要的领域,这有助于我们去让计算机理解语言的作用和使用。文本
转载
2023-08-04 14:19:10
441阅读
文本相似度算法的对比及python实现前言通常我们有这样的需求:对两篇文章或者产品内容进行重复率查询。为了解决类似的问题,罗列了一些常见的相似度算法,用python代码实现。五种常见的相似度算法:余弦相似度(cosine_similarity)、jaccard相似度、编辑距离(Levenshtein)、MinHash、SimHash + 海明距离。代码是一位前辈留下的,做一下整理分享出来。算法的具
转载
2023-08-30 12:35:19
269阅读
个人项目:论文查重这个作业要求在哪里传送门https://github.com/asiL-tcefreP/-software-engineering-2/tree/master一、模块接口的设计与实现过程1.1 算法来源文本相似度计算常用于网页去重以及NLP里文本分析等场景。文本相似度,可以分为两种,一种是字面相似度,另一种是语义相似度。本文记录的是文本的字面相似度的计算及实现,语义相似度计算则需
转载
2023-11-01 19:21:35
0阅读
文本分析—余弦相似度计算一、余弦相似度简介欧几里得点积公式:a · b = || a || || b || cosθ 我们从图中可以看出,利用两个向量之间夹角的余弦值来代表两个向量之间的差异。 那么对于文本来说,如何将文本转换成可以计算的向量二、文本余弦相似度 我们从文本出发,首先需要对文本进行预处理,包括分词、去停用词等等操作,接着将文本进行向量化,这样才可以进行后续的余弦相似度计算。三、代码实
转载
2023-11-02 09:12:07
78阅读
编程:所用python的包下的gensim。 编程路径: 1.读取文档 2.对要计算的文档进行分词 3.把文档按照空格整理成一个超长的字符串 4.计算词语出现的频率 5.对频率低的词进行过滤,如果文档过小就不用选,过大的话把频率过低的词过滤后,在更快计算 6.通过语料库建立词典 7.加载要对比的文档 8.将要对比的文档通过doc2bow转化为稀疏向量 9.对稀疏向量进行处理,获得新语料库 10.将
转载
2023-10-13 12:34:02
239阅读
在自然语言处理(NLP)领域,文本相似度计算是一个常见的任务。本文将介绍如何使用Python计算文本之间的相似度,涵盖了余弦相似度、Jaccard相似度和编辑距离等方法。1. 余弦相似度余弦相似度是一种衡量两个向量夹角的方法,用于衡量文本的相似度。首先,将文本转换为词频向量,然后计算两个向量之间的余弦值。from sklearn.feature_extraction.text import Cou
转载
2023-11-02 06:56:29
168阅读
文本相似度任务:最*接到文本结构化的任务,经过一番实验发现,可将该任务转化为计算标题检索排序任务,可用文本相似度的方法来做。文本相似度计算可直接根据文本本身计算距离来得到或使用模型将语义向量化后再计算距离得到。一、根据文本本身计算相似度:1)余弦相似度import numpy as np
from collections import Counter
def cos_sim(str1, str
转载
2023-07-19 16:10:57
191阅读
文本相似度计算在信息检索、数据挖掘、机器翻译、文档复制检测等领域有着广泛的应用。文本相似度常用的计算方法有TF-IDF、LSI、LDA等。1.TF-IDF模型TF-IDF(Term Frequency-Inverse Document Frequency)是一种统计方法,用以评估某一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随
转载
2023-09-04 23:30:38
132阅读
相似度计算关键组件相似度计算方法有2个关键组件:表示模型、度量方法。 常见的文本表示模型和相似度度量方法 前者负责将物体表示为计算机可以计算的数值向量,也就是提供特征。后者负责基于前面得到的数值向量计算物体之间的相似度。欧几里得距离、余弦距离、Jacard相似度、最小编辑距离距离的度量方式欧几里得距离 使用python计算欧式距离:
转载
2023-07-19 16:10:43
440阅读
文本比较算法Ⅰ——LD算法
在日常应用中,文本比较是一个比较常见的问题。文本比较算法也是一个老生常谈的话题。 文本比较的核心就是比较两个给定的文本(可以是字节流等)之间的差异。目前,主流的比较文本之间的差异主要有两大类。一类是基于编辑距离(Edit Distance)的,例如LD算法。一类是基于最长公共子串的(Longest Common Sub
转载
2023-11-21 10:46:58
66阅读
方法1:无监督,不使用额外的标注数据average word vectors:简单的对句子中的所有词向量取平均,是一种简单有效的方法,缺点:没有考虑到单词的顺序,只对15个字以内的短句子比较有效,丢掉了词与词间的相关意思,无法更精细的表达句子与句子之间的关系。tfidf-weighting word vectors:指对句子中的所有词向量根据tfidf权重加权求和,是常用的一种计算sentence
转载
2023-10-31 17:30:06
159阅读
在处理数据时,有时需要找出数据中存在错误的数据或者对数据进行去重。对数据去重,如果存储在数据库中,我想一个sql就可以搞定,可是要找出数据中错误的数据,就比较困难,一般只能人工判断。举例:比如有一批账单中,存储的都是企业的名称,但想统计一下具体真正的有多少企业,我们可能会说,如果是数据库中,直接distinct一下不就出来了?对,我们可以使用distinct把重复的企业去掉,但是看看留下的企业名称
转载
2023-11-20 08:58:12
119阅读
1.百度百科介绍: Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。 编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。 2.用途 模糊查询 3.实现过程 a.首先是有两个字符串,这里写一个简单的 abc
转载
2024-06-17 07:50:37
26阅读
目录:问题LD算法Needleman/Wunsch算法Nakatsu算法 问题字符串s1 和 字符串s2 的比较算法 ==> 相似度 or 差异性。主流的算法有两大类:基于编辑距离基于最长公共子串 LD算法LD算法(Levenshtein Distance)又称为编辑距离算法(Edit Distance):以字符串A通过插入字符、删除字符、替换字符变成另一个字符串B,其中
转载
2023-08-03 16:07:48
142阅读
文本匹配是NLU中的一个核心问题,虽然基于深度学习的文本匹配算法大行其道,但传统的文本匹配算法在项目中也是必要的。本文详解了传统的文本匹配算法Jaccard、Levenshtein、Simhash、Bm25、VSM的原理及其代码分享给大家,若有不足之处,请大家指出。1. 概述 在实际工程项目,不论是基于交互的还是基于表示的文本匹配,往往都会结合传统的字面匹配算法来综合评估两段文本的
转载
2024-02-29 11:19:47
122阅读
#! /usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/11/12 15:44 """ 我们再写一遍这个算法; """ from icecream import ic import jieba import jieba.analys
原创
2022-06-16 09:02:40
342阅读
简单讲解上一章有提到过[基于关键词的空间向量模型]的算法,将用户的喜好以文档描述并转换成向量模型,对商品也是这么处理,然后再通过计算商品文档和用户偏好文档的余弦相似度。文本相似度计算在信息检索、数据挖掘、机器翻译、文档复制检测等领域有着广泛的应用。比如舆论控制,我们假设你开发了一个微博网站,并且已经把世界上骂人的句子都已经收录进了数据库,那么当一个用户发微博时会先跟骂人句子的数据库进行比较,如果
转载
2024-08-26 11:54:46
121阅读
本文对两种文本相似度算法进行比较。余弦值相似度算法 VS 最小编辑距离法1、L氏编辑距离(基于词条空间)编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。算法实现步骤:1 设置n为字符串s的长度。("我是个小仙女") 设置m为字符串t的长度。("
转载
2024-08-11 16:20:29
29阅读