# 如何用Python实现计算互信息熵
## 引言
作为一名经验丰富的开发者,我将教你如何使用Python来计算互信息熵。互信息熵是一种衡量两个随机变量之间关联性的指标,通过计算两个随机变量的联合概率分布和各自的边缘概率分布来得到。在这篇文章中,我将向你展示实现互信息熵的步骤,并给出相应的Python代码。
## 流程图
```mermaid
flowchart TD
A[导入必要
原创
2024-06-24 04:42:16
87阅读
信息量 信息量是通过概率来定义的:如果一件事情的概率很低,那么它的信息量就很大;反之,如果一件事情的概率很高,它的信息量就很低。简而言之,概率小的事件信息量大,因此信息量 \(I(x)\) 可以定义如下: \[ I(x) := log(\frac{1}{p(x)}) \] 信息熵/熵 表示随机变量不 ...
转载
2021-10-20 12:04:00
1198阅读
2评论
关于这些概念看过很多次了,但一直都记不住,索性用笔记形式记下来备查吧。1. 熵Entropy关于熵的基本概念就不说了,可以认为是用来描述随机变量的不确定性,也可以说是用来描述随机变量平均信息量(信息量用编码长度表示,熵即为编码长度的期望形式)。公式如下:H(X)=∑x∈Xp(x)logap(x)当a=2时,即熵的单位为比特。可以看到,当有必然事件p(x)=1发生时,熵值达到最小值0;当所有概率均相
转载
精选
2013-11-08 11:30:39
4206阅读
字典树原来讲明白了剩下的就是具体实现了,最适合存储和计算词频的数据结构就是字典树,这里给一个讲解的很清楚的链接具体代码代码已开源,需要的点击这个Github
转载
2023-07-13 22:34:23
166阅读
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:https://github.com/timerring/information-theory 】或者公众号【AIShareLab】回复 信息论 获取。平均互信息平均互信息定义Y 末知, 的不确定度为 Y 已知, 的不确定度变为 互信息 = 先验不确定性 - 后验不确定性 =
原创
精选
2023-04-07 09:51:26
402阅读
在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度。不同于相关系数,互信息并不局限于实值随机变量,它更加一般且决定着联合分布 p(X,Y) 和分解的边缘分布的乘积 p(X)p(Y) 的相似程度。互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual
最近看一些文档,看见了互信息的使用,第一次接触互信息,感觉和专业有些相关,就把它记录下来,下面是一片不错的文章。 互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。平均互信息量定义:互信息量I(xi;yj)在联合概率空间P(XY)中的统计平均值。 平均互信息I(X;Y)克服了互信息量I(xi;yj)的随机性,成为
转载
2023-11-11 13:22:52
120阅读
参考【信息论基础】第2章离散信息的度量—自信息和互信息_哔哩哔哩_bilibili目录一、自信息◼ 自信息例题◼ 联合自信息 例题◼ 条件自信息例题 例题2◼ 自信息,联合自信息和条件自信息之间的关系二、互信息◼ 互信息互信息的性质例题◼ 条件互信息例题一、自信息◼ 自信息自信息主要描述:随机事件中,某一个事件自身的属性。比如:从1到10中随机抽取一个数字,可能的结果有10个,
转载
2023-12-14 13:37:41
228阅读
————————————————
原创
2023-10-30 17:29:43
132阅读
# 实现“互信息图像配准python”流程及代码示例
## 一、流程概述
为了实现“互信息图像配准python”,我们需要按照以下步骤进行操作。下表展示了整个流程的步骤及每一步需要做的事情。
| 步骤 | 操作 |
| -------- | ------ |
| 1 | 导入必要的库 |
| 2 | 读取需要配准的两幅图像 |
| 3 | 图像预处理 |
| 4 | 计算互信息 |
| 5 |
原创
2024-03-06 03:55:10
169阅读
# 利用Python计算图像的互信息
互信息(Mutual Information)是衡量两个随机变量之间相互依赖程度的一种量化方法。图像处理中,互信息常用于配准(registration)和融合(fusion)等任务,能够有效地评估两幅图像相似性。本文将详细介绍如何使用Python计算图像的互信息,并提供完整的代码示例。
## 什么是互信息?
在概率论中,互信息定义为一个随机变量中的信息量
来自PRML的1.6 一个随机变量可以取多个值,每取一个值相当于发生了一个event,不同event发生后产生的信息量不同,这个信息量应该如何度量呢? 首先,信息量应该与这件事发生的概率有关,越小概率的事情发生了产生的信息量越大,如地震了;越大概率的事情发生了产生的信息量越小,如太阳从东边升起来了。因此一个event的信息量应该是随着其发生概率而递减的,且不能为负。 其次,两个独立event...
原创
2021-08-25 15:22:30
717阅读
声学模型的训练一般是基于极大似然准则(ML),然而ML只考虑正确路径的优化训练,没有考虑降低其他路径的分数,因此识别效果不佳。区分性训练目标是提高正确路径得分的同时降低其他路径的得分,加大这些路径间的差异,因此识别效果更好。1 互信息 区分性训练的其中一个常用准则叫MMI准则,即最大化互信息准则。那么什么是互信息呢?我们先来看看互信息的根源。源头:信息量:一个事件发生的概率越
转载
2023-10-11 21:19:48
500阅读
# 使用 Python 计算互信息:新手指南
互信息(Mutual Information)是信息论中的一个重要概念,用于量化两个随机变量之间的依赖关系。在数据科学和机器学习中,互信息可以用来评估变量之间的相关性,是特征选择的一个有效工具。本篇文章将带你一步一步实现互信息的计算。
## 流程概述
在开始之前,我们可以把实现互信息的步骤拆分为以下几个简单的部分:
| 步骤 | 描述
原创
2024-08-07 07:30:45
145阅读
扣丁学堂Python开发socket实现简单通信功能实例2018-08-21 14:12:38747浏览今天扣丁学堂Python培训老师给大家结合实例介绍一下关于socket实现的简单通信功能,首先套接字(socket)是计算机网络数据结构,在任何类型的通信开始之前,网络应用程序必须创建套接字,可以将其比作电话的插孔,没有它将无法进行通信,下面我们一起来看下一下是如何实现的。常用的地址家族AF_U
转载
2023-12-18 13:12:09
43阅读
标准化互信息NMI (Normalized Mutual Information)常用在聚类评估中。标准化互信息NMI计算步骤Python 实现代码:''' 利用Python实现NMI计算'''
import math
import numpy as np
from sklearn import metrics
def NMI(A,B):
# 样本点数
total = len(A
转载
2023-07-06 10:25:58
552阅读
简单介绍: 基于互信息的图像配准算法以其较高的配准精度和广泛的适用性而成为图像配准领域研究的热点之中的一个。而基于互信息的医学图像配准方法被觉得是最好的配准方法之中的一个。基于此。本文将介绍简单的基于互信息的图像配准算法。预备知识熵 熵(entropy)是信息论中的重要概念,用来描写叙述系统
转载
2023-10-30 14:46:53
234阅读
互信息的原理、计算和应用Mutual Information 互信息Background熵 Entropy交叉熵 Cross Entropy条件熵 Conditional EntropyKL-散度 KL-divergence定义计算方法Variational approach^[3]^Mutual Information Neural Estimation, MINE^[5]^DEEP INFO
转载
2023-12-22 21:10:02
366阅读
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作《A Mathematical Theory of Communication》中提出的。如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习。 信息量用来度量一个信息的
原创
2022-01-14 16:46:37
1709阅读
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的互信息(mutual information)即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之卡方检验特征选择之Fisher Score2
转载
2023-08-27 16:15:57
1041阅读