数据:定义:特征的数量减少特征选择:原因:1、冗余部分特征相关性高,容易消耗计算机性能2、噪声:部分特征对预测结果有负影响工具:1、Filter(过滤式):VarianceThreshold   (sklearn.feature_selection.VarianceThreshold)2、Embedded(嵌入式):正则化、决策树3、Wrapper(包裹式)方差大小来考虑P
1. 纬度  纬度是数据集中特征的数量。2.   是对给定数据集进行(特征)的过程。也就是说,如果数据集有100列/特性,并将列数减少到了20-25列。2.1 的好处  随着特征数量的增加,数据点的数量也会成比例地增加。即越多的特征会带来更多的数据样本,模型的性能会提升。当数据纬度过大时,会造成“纬度灾难”,导致模型的性能降低。因此应当对数据进行处理,使模型性能达到最优。它有助
主成分分析(PCA)PCA 是一种基于从高维空间映射到低维空间的映射方法,也是最基础的无监督算法,其目标是向数据变化最大的方向投影,或者说向重构误差最小化的方向投影。它由 Karl Pearson 在 1901 年提出,属于线性方法。与 PCA 相关的原理通常被称为最大方差理论或最小误差理论。这两者目标一致,但过程侧重点则不同。 最大方差理论原理 将一组 N 向量降为
# Python数据的实现流程 下面是Python数据的实现流程的表格: | 步骤 | 描述 | | --- | --- | | 1 | 导入必要的库 | | 2 | 加载数据 | | 3 | 数据预处理 | | 4 | 实施算法 | | 5 | 可视化结果 | 接下来,我们将逐步解释每个步骤所需的代码及其注释。 ## 1. 导入必要的库 在之前,我们需要导入一些必要
原创 2023-07-14 03:34:44
81阅读
在原始的空间中,包含冗余信息以及噪音信息,在实际应用中总会产生误差,降低了准确率,我们希望减少冗余信息所造成的误差,提升识别精度。又或者希望通过算法寻找内部的本质结构特征。数据的目的:维度降低便于可视化和计算,深层次的含义在于有效信息的特征提取以及无用信息的抛弃。线性映射:PCA以及LDA:PCA:通过某种线性投影,将高数据映射到低维空间中,并希望在所投影后的维度数据方差最大,以此使用较
来自:宋天龙《PYTHON数据分析与数据化运营》,以下内容比较简陋,方便日后翻阅。1. python实现数据数据的情况: 1.维度数量 2.建模是否需要保留原始维度,保留:特征选择;不保留:特征转化(PCA,LDA) 3.对模型的计算效率和时效性 的方式:特征选择,特征转换,特征组合import numpy as np from sklearn.tree import Decisio
转载 2023-08-31 19:27:34
108阅读
本文包括两部分,使用python实现PCA代码及使用sklearn库实现PCA,不涉及原理。总的来说,对n数据进行PCA维达到k就是:对原始数据减均值进行归一化处理;求协方差矩阵;求协方差矩阵的特征值和对应的特征向量;选取特征值最大的k个值对应的特征向量;经过预处理后的数据乘以选择的特征向量,获得结果。 实验数据数据data.txt使用[2]中编写的数据,以下是部分数据
转载 2023-08-10 11:37:47
206阅读
背景与原理:PCA(主成分分析)是将一个数据的特征数量减少的同时尽可能保留最多信息的方法。所谓,就是在说对于一个$n$数据集,其可以看做一个$n$维空间中的点集(或者向量集),而我们要把这个向量集投影到一个$k<n$维空间中,这样当然会导致信息损失,但是如果这个$k$维空间的基底选取的足够好,那么我们可以在投影过程中尽可能多地保留原数据集的信息。数据的目的在于使得数据更直观、更易读
数据为何要数据可以降低模型的计算量并减少模型运行时间、降低噪音变量信息对于模型结果的影响、便于通过可视化方式展示归约后的维度信息并减少数据存储空间。因此,大多数情况下,当我们面临高数据时,都需要对数据处理。数据有两种方式:特征选择,维度转换特征选择特征选择指根据一定的规则和经验,直接在原有的维度中挑选一部分参与到计算和建模过程,用选择的特征代替所有特征,不改变原有特征,也不产生
转载 2023-10-04 14:22:01
102阅读
写在前面:看完这篇文章,你会知道: ①为什么要用PCA?②PCA的原理?③slearn中的PCA如何使用?资料来源于互联网及课堂讲义;欢迎讨论和补充~1 背景1.1 数灾难在做数据挖掘的时候,经常会遇到数据体量过大的情况,这种大体量往往会在两方面:样本量过大(表现为行多);样本特征过多(表现为列多);从而在处理的时候会占用很多时间和空间,耗费大量的成本。数灾难(Course
前言为什么要进行数据?直观地好处是维度降低了,便于计算和可视化,其深层次的意义在于有效信息的提取综合及无用信息的摈弃,并且数据保留了原始数据的信息,我们就可以用数据进行机器学习模型的训练和预测,但将有效提高训练和预测的时间与效率。方法分为线性和非线性,非线性又分为基于核函数和基于特征值的方法(流形学习),代表算法有线性方法:PCA  ICA LDA  LFA基于核的非
原创 2021-01-21 21:12:14
990阅读
SVD(Singular Value Decomposition,奇异值分解)是机器学习领域中很常用的算法;比如在文本分类场景中,在求解完语料的Tfidf后,紧跟着会进行SVD,然后建模。另外在推荐系统、自然语言处理等领域中均有应用;今天主要聊一聊SVD的。下图展示了一个利用SVD对图片压缩降噪的例子;在取不同比例奇异值时,图片信息的损失变化情况不同。在取80%奇异值时,原图片整体表现清晰
Python中T-SNE实现 from sklearn.manifold import TSNE from sklearn.datasets import load_iris from sklearn.decomposition import PCA import matplotlib.pyplot as plt iris = load_iris() X_tsne = TSNE(
转载 2023-05-30 19:50:27
92阅读
网上关于各种算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。所谓,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d<
1 基于特征选择的维特征选择是在数据建模过程最常用的特征手段,简单粗暴,即映射函数直接将不重要的特征删除,不过这样会造成特征信息的丢失,不利于模型的精度。由于数据的Fenix以抓住主要影响因素为主,变量越少越有利于分析,因此特征选择常用于统计分析模型中。1.1特征选择的方法过滤法(Filter):按照发散性或者相关性对各个特征进行评分,通过设定阈值或者待选择阈值的个数来选择特征。包装法(Wr
 作者:  郗晓琴  熊泽伟今天这篇文章是介绍目前前沿好用的一种可视化算法:t-SNE,并且附带python的实际例子加以讲解。t-SNE是什么技术我们直接开门见山好了,第一件事:什么是t-SNE?t-SNE的全称叫做t分布式随机邻居嵌入(t-SNE)。该算法是一种非监督的非线性技术,主要用于数据探索和可视化高数据。简而言之,t-SNE为我们提供了数据
数据概述1.数据概述所谓的数据就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中,可以解决大规模特征下的数据显示问题,使得数据集更易使用,降低后续算法的计算,消除噪声影响并使得结果更易理解。 数据的方法有很多,可从线性或非线性角度对其简单分类。 线性是指通过所得到的低数据能保持高数据点之间的线性关系,主要包括主成分分析(Principal Compone
1、背景高数据数灾难        在高情况下出现的数据稀疏,计算距离困难情况下,是所有机器学习都要面临的严峻问题,称为数灾难。        当一个维度上的数据相对较多时,增加维度会拉伸该维度上的点,使它们更加分开,导致更加稀疏,由于等距离,距离测量变得毫无意义。2、技术概述   
sklearn中的算法1. PCA与SVD sklearn中算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。在2006年,Netflix曾经举办了一个奖金为100万美元的推荐系统算
1. 基于特征选择的 这种方法的好处是,在保留了原有维度特征的基础上进行。 例如通过决策树得到的特征规则,可以作为选择用户样本的基础条件,而这些特征规则便是基于输入的维度产生。假如在决策树之前将原有维度表达式(例如PCA的主成分)方法进行转换,那么即使得到了决策树规则,也无法直接应用于业 ...
转载 2021-08-23 17:16:00
486阅读
  • 1
  • 2
  • 3
  • 4
  • 5