numpy随机抽样np.random.choice(a, size=None,replace=None, p=None)numpy从一个范围中选择不重复的数字replace = False就好
转载 2023-06-04 21:49:48
164阅读
抽样方法概览随机抽样—总体个数较少每个抽样单元被抽中的概率相同,并且可以重现。随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取。 1、抽签法 2、随机数法:随机数表、随机数骰子或计算机产生的随机数。分层抽样——总体存在差异且对结果有影响分层抽样是指在抽样时,将总体分成互不相交的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本的方法。层内变异越小
不用调包也能便捷地划分数据集,用随机抽样sample()函数两行代码可以轻松搞定。 #划分训练集 train_data = data.sample(frac = 0.8, random_state = 0) #测试集 test_data = data.drop(train_data.index)代码讲解:frac 设置抽样的比例,这里的意思是抽取80%的数据作为训练集;random_st
1.简单随机抽样简单随机抽样是按等概率原则直接从总体数据中抽取n个样本,这种抽样的基本前提是所有样本个体都是等概率分布的,该方法适用于个体分布均匀的场景。相关代码如下:import numpy as np import random data=np.loadtxt('F:\小橙书\chapter3\data3.txt') data_sample=random.sample(data.tolist(
转载 2023-08-09 17:42:29
226阅读
一、简单随机抽样将调查总体全部观察单位编号,再用抽签法或随机数字表随机抽取部分观察单位组成样本。 优点:操作简单,均数、率及相应的标准误计算简单。 缺点:总体较大时,难以一一编号。1、pandas随机抽样 DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)局限:
学习目标目标知道总体、样本、样本大小、样本数量知道样本统计量和总体统计量知道总体分布、样本分布和抽样分布知道常用的抽样方法 没文化,真可怕!我该怎么办? 有时候数据很容易收集,例如参加健身俱乐部的人的年龄,后这一家游戏公司的销售数据。但有时候不太容易,该怎么办呢? 是时候拿出终极武器了— 抽样1.抽样相关概念总体:是指研究对象的整个群体。 公司生产的一批糖果 样本:是从
转载 7月前
13阅读
###matlab转python实现系列(二)信号的抽样和内插程序结构 定义基础函数:产生方波,时频转化 定义功能函数:show_sin 定义功能函数:show_rec 定义功能函数:show_trg
转载 2023-08-08 21:06:24
87阅读
学习目标目标 知道总体、样本、样本大小、样本数量 知道样本统计量和总体统
原创 2023-01-12 11:12:58
564阅读
写在前面总是搞不懂、记不住这些名字好像很厉害的算法思想,这篇文章主要写一下Bootstrap抽样和蒙特卡罗算法思想。一、Bootstrap抽样1、基本思想Bootstrap抽样的基本思想是在全部样本未知的情况下,借助部分样本的有放回多次抽样,构建某个估计的置信区间,抽象地说,通过样本得到的估计并没有榨干样本中的信息,bootstrap利用重采样,把剩余价值发挥在构建置信区间上。2、算法流程对于一个
需求:1.不放回抽签 2.把名单上的人员都抽取完以后才能开始下一轮 3.每次打分数都累加 4.可以查看前三和后三名使用excel实现:思路就是先拿到名单数据,然后抽签(判断抽出来的人在不在新list中),打分,排序。使用递归调用实现多次抽取。数据样例:import xlrd import random import sys from openpyxl import load_workbook f
转载 2023-06-26 11:05:50
276阅读
一、带有随机性的实验常见的带有随机性的一些算法及处理步骤:(1)神经网络当中的初始化权重。(2)聚类算法,例如K-means算法的初试聚类中心;(3)随机森林中牵涉到的数据或特征抽样;(4)随机抽取训练集测试集时,不使用随机种子第一次和第二次随机抽取的数据集会不同;使用随机种子,第一次第二次随机抽取的数据集就会相同。但是问题来了,因为牵涉到随机因素,那么不要说复现别人的结果,那么即使自己对比自己上
import random import numpy as np #简单随机抽样 data=np.loadtxt("E:/data/book/python_book/chapter3/data3.txt") # print(type(data)) data_sample=random.sample(list(data),2000)#随机抽取2000个样本 # print(data_sample[:
转载 2023-06-16 21:06:56
120阅读
学过统计学的同学应该对置信区间都有了解,置信区间又叫估计区间,是从概率来讲某个随机变量可能取的值的范围。那很多时候数据是不符合正态分布,或者是我们不知道样本总体是否符合正态分布,但是我们又需要求取置信区间时,就可以用到我们的今天的主角–在乐字节课堂上教的Bootstrap抽样的方法。Bootstrap是对样本进行有放回的抽样抽样若干次(一般为1000次),每次抽样的结果作为一个样本点,抽样100
# MySQL 数据抽样指南 在数据分析和处理过程中,抽样是一种非常重要的技术,它帮助我们从庞大的数据集中提取代表性的数据进行分析。接下来,我将为您提供一个详细的流程,教您如何在 MySQL 中实现数据抽样。 ## 数据抽样流程 为了清晰表达整个数据抽样的过程,下面是我们的步骤表: | 步骤 | 描述 | | ---- | ---- | | 1 | 选择数据源,确定需要抽样的表 |
原创 2024-09-09 06:44:15
51阅读
# -*- coding: utf-8 -*- import pandas as pd import os import re import xlsxwriter import xlrd from random import randint, sample ####线上作业明细 input1 = r ...
转载 2021-08-31 15:50:00
90阅读
2评论
     前段时间在做一个挖掘模型时,模型的特征决定了选择的数据是严重有偏的,怎样在这样的数据上进行抽样,得到能比较好地反映真实情况的数据样本是很关键的。自己对统计学仅仅限于大学课程的学习,很少做过实验,在做数据预处理走了一些弯路。下面对数据挖掘中的抽样发表一点浅见。     在数据挖掘的数据预处理
numpy.random模块中对python内置的random进行了补充,可以生成多种概率分布。离散型随机变量1、二项分布二项分布可以用于只有一次实验只有两种结果,各结果对应的概率相等的多次实验的概率问题。比如处理猜10次拳赢6次的概率等类似的问题。numpy.random.binomial(n, p, size=None)Draw samples from a binomial distribu
转载 2024-05-30 12:27:40
61阅读
背景什么是 NumPy 呢?NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库,可以帮助程序员轻松地进行数值计算,通常应用于以下场景:执行各种数学任务,如:数值积分、微分、内插、外推等。因此,当涉及到数学任务时,它形成了一种基于 Python 的 MATLAB 的快速替代。计算机中的图像表示为多维数字数组。NumPy 提供了一些优秀的库函数
转载 2023-09-27 12:08:15
43阅读
随机抽样numpy.random 模块对 Python 内置的 random 进行了补充,增加了一些用于高效生成多种概率分布的样本值的函数,如正态分布、泊松分布等。 numpy.random.seed(seed=None) Seed the generator.seed()用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed()值,则每次生成的随机数都相同,如果不设置这个值,则系统根据
一、RANSAC理论介绍普通最小二乘是保守派:在现有数据下,如何实现最优。是从一个整体误差最小的角度去考虑,尽量谁也不得罪。RANSAC是改革派:首先假设数据具有某种特性(目的),为了达到目的,适当割舍一些现有的数据。给出最小二乘拟合(红线)、RANSAC(绿线)对于一阶直线、二阶曲线的拟合对比:可以看到RANSAC可以很好的拟合。RANSAC可以理解为一种采样的方式,所以对于多项式拟合、混合高斯
转载 2024-08-11 18:22:13
49阅读
  • 1
  • 2
  • 3
  • 4
  • 5