朴素算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响朴素的实现流程1.理解先验概率和后验概率的区别?&n
朴素(西瓜数据集分类,社区恶意留言分类,垃圾邮件分类,新浪新闻分类),AODE分类器 代码实现以下代码为本人学习后,修改或补充后的代码实现,数据集和原代码请参考:https://github.com/Jack-Cherish/Machine-Learning西瓜数据集分类import numpy as np from math import exp, sqrt, pi def getDa
代码实现西瓜分类,我们先上数据:我的编程实现过程非常杂糅,没有系统,而且我的python也没学多久,所以用的都是简单的循环、函数。在编程过程中,我把色泽变量记为x1,根蒂记为x2,敲声记为x3,纹理记为x4,脐部记为x5,触感记为x6,密度记为x7,含糖率记为x8,是否为好瓜这一名义变量记好瓜为0,坏瓜为1。接下来,我们引入一些有关朴素算法的基础知识: 首先是计算先验概率: 在实际编程过程中
朴素朴素和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X),要么是条件分布P(Y|X)。但是朴素却是生成方法,也就是直接找出特征输出Y和特征X的联合分布P(X,Y),然后用P(Y|X)=P(X,Y)/P(X)得出。公式:P(A|B) =
朴素算法是一种有监督的分类算法,可以进行二分类,或者多分类。基于概率论的贝叶斯定理,应用非常广泛,从文本分类、垃圾邮件过滤器、医疗诊断等等。朴素适用于特征之间的相互独立的场景,例如利用花瓣的长度和宽度来预测花的类型。“朴素”的内涵可以理解为特征和特征之间独立性强。算法python实现如下,共收集两个代码代码1为使用iris数据集,仅输出预测准确率,代码2使用简单的文字词语,进行预测某
       最近工作中涉及到文本分类问题,于是就简单的看了一下朴素算法(Naive Bayes),以前对该算法仅仅停留在概念上的了解,这次系统的查阅资料学习了一下。朴素算法以贝叶斯定理为理论基础,想起大学时学习概率论与数理统计时,老师仅仅讲授贝叶斯定理,却没有引申讲一下朴素算法。上学时,学习很多数学定理时,心里都有个疑问,这个到底有什么用
一、朴素模型(Naive Bayesian Model,NBM)朴素中的朴素一词的来源就是假设各特征之间相互独立。这一假设使得朴素算法变得简单,但有时会牺牲一定的分类准确率。1、条件概率 设A,B为任意两个事件,若P(A)>0,我们称在已知事件A发生的条件下,事件B发生的概率为条件概率,记为P(B|A),并定义2、全概率公式 如果 P(Ai)>0,则对任一事件B,有
1、贝叶斯定理在一个论域中,某个事件A发生的概率用P(A)表示。事件的条件概率P(A|B)的定义为:在事件B已经发生的前提下事件A发生的概率。公式如下:那么给一个样本X分类,即已知一组类 Y1 , Y2 , …, Yk 和一个未分类样本X, 判断X应该属于Y1, Y2, …, Yk 其中哪个类别。利用贝叶斯定理,则问题转换为:样本X属于这k个类中的哪一个类的几率最大。公式如下:2、算法分析假设
一、概述  算法是一系列分类算法的总称,这类算法均是以贝叶斯定理为基础,所以将之统称为分类。而朴素(Naive Bayesian)是其中应用最为广泛的分类算法之一。  朴素贝叶斯分类器是基于一个简单的假定:给定目标值时属性之间相互条件独立。二、核心思想  用p1(x, y)表示数据点(x, y)输入类别1的概率,用p2(x, y)表示数据点(x, y
     1 from numpy import zeros,array 2 from math import log 3 4 def loadDataSet(): 5 #词条切分后的文档集合,列表每一行代表一个email 6 postingList=[['your','mobile','number','is','award','bon
简介 NaïveBayes算法,又叫朴素算法,朴素:特征条件独立;:基于贝叶斯定理。属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。基本思想 (1)病人分类的例子 某个医院早上收了六个门诊病人,如下表:症状  职业   疾病  ——————————————————&nb
大家好,沉寂了好久之后,终于决定发第二篇文章。闲话少叙,请看正文。 朴素决策论的一部分,在讲述之前,先阐述一下决策论。 一、决策论 决策论是概率框架下实施决策的基本方法。我们以多分类任务为例来解释其基本原理 1.1条件风险的提出:假设有N种可能的类别标记,即,表示将一个真实标记为的样本误分为所产生的损失。那么基于后验概率P(|),我们可以将样本x分
朴素算法朴素(Naive Bayes)是基于贝叶斯定理和特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对于给定的输入\(x\),利用贝叶斯定理求出后验概率最大的输出\(y\)。1. 概率论基础条件概率条件概率是指事件\(A\)在另外一个事件\(B\)已经发生条件下的发生概率。 此时,条件概率表示为:\(P(A|B
朴素朴素是一种速度很快的分类算法,适用于数据特征维度很高的情况。它假设数据的特征之间相互独立,这也是“朴素”这一名称的由来,其数学基础是贝叶斯定理。 根据每个特征的数据分布的假设不同,有高斯朴素,多项式朴素,伯努利朴素。高斯朴素高斯朴素假设每个特征的数据服从高斯分布,也就是正态分布 在scikit-learn中运用高斯朴素:from sklearn.
1 算法抽象性解释NaïveBayes算法,又叫朴素算法,是基于贝叶斯定理与特征条件独立假设的分类方法。名称由来:朴素,即特征条ming件独立;:基于贝叶斯定理。所谓朴素,就是在整个形式化过程中只做最原始的假设。朴素决策理论的一部分,关于决策理论解释如下:实例1:假设有一个数据集,由两类组成(简化问题),对于每个样本分类都已明确,数据分布如下图: 现在出现
简单介绍下朴素分类原理: 首先要知道公式: 贝叶斯定理是一种用先验概率推断后验概率:在B出现的前提下,A出现的概率等于A出现的前提下B出现的概率乘以A出现的概率再除以B出现的概率。通过联系A与B,计算从一个事件产生另一事件的概率,即从结果上溯原。 而这一章的代码,是通过简单的词袋模式,通过计算训练集中该事件对应的每个词出现的先验概率,来推断出文章中每个词对应的事件概率,对同类概率求和,
转载 2023-06-15 22:12:10
103阅读
说起朴素,我脑海中的第一印象是各种独立事件组合发生的概率。 所谓朴素,其实就是根据已知独立事件来求未知组合发生的概率。 举个例子: 当一个病人 患上头痛,职业是农夫,那么他的疾病最可能是什么? 这就是朴素要估计的事情。 定义:朴素是基于定律和特征条件独立假设的**分类方法,**根据提供的数据集,首先基于特征条件独立假设学习输入/输出的联合概率发布,然后基于此模型,对于
先导说明我们经常用MLE最大似然来构造模型的目标函数,最大似然的目的是让观测到的数据概率最大,所以最大化的就是训练数据的概率。而MAP后验是在观测数据之上又加上了先验概率,要让模型符合先验概率。当数据足够多的时候,MAP趋近于MLE。求极值最容易想到的方法是求导置零。贝叶斯定理: 也就是联合概率P(A,B)=P(B,A)=P(A|B)*P(B)=P(B|A)*P(A)朴素是生成模型,建模的就
转载 2024-07-04 15:52:57
48阅读
实验三 朴素算法及应用作业信息这个作业属于哪个课程计算机18级这个作业要求作业要求这个作业的目标实验三 朴素算法及应用学号3180701133一、实验目的1.理解朴素算法原理,掌握朴素算法框架;2.掌握常见的高斯模型,多项式模型和伯努利模型;3.能根据不同的数据类型,选择不同的概率模型实现朴素算法;4.针对特定应用场景及数据,能应用朴素解决实际问题。二、实验内容
转载 2023-07-24 16:06:17
145阅读
本文主要从下面两个方面展开 朴素我的理解代码实现 我的理解朴素的本质就是在假设输入特征相互独立的条件下(这个假设是为了方便计算似然函数,因为这里的特征X可能有很多属性,而且取值也很多,先验概率还是后验概率的区分主要是先搞清楚研究的是什么,比如说这里我们想要知道的是类别Y,那么先验概率就是P(Y),后验概率就是P(Y|X)),利用后验概率对样本进行分类的学习方法,后验概率由理论可表
  • 1
  • 2
  • 3
  • 4
  • 5