前面使用OpenCV创建了一个简单的视频播放器。下面做点更有趣的事情。 许多基本的视觉任务涉及将滤镜应用于视频。下面修改程序,在播放视频时,对其进行简单的操作。一个简单的操作是平滑图像,通过高斯或其他类似的核函数进行卷积来有效地减少图像的信息。例5。 在图像显示在屏幕上之前加上高斯平滑操作#include "opencv2/highgui/highgui.hpp"
#include "opencv
# 图片堆叠技术在计算机视觉中的应用
## 概述
在计算机视觉领域,图像处理是一项重要的技术。图像堆叠(Image Stacking)是一种常见的图像处理技术,它可以将多幅图像叠加在一起,从而实现一些特定的效果。在本文中,我们将介绍如何使用OpenCV和Python来实现图片堆叠技术。
## 图片堆叠的原理
图片堆叠的原理很简单,就是将多幅图像按照一定的顺序叠加在一起。在叠加的过程中,可以
原创
2024-07-12 06:36:54
93阅读
作者:车小胖堆叠大量使用最深层的原因:为了排挤竞争对手!无论是Cisco 、华为、还是别的厂商,没有例外,详细阐述参考下文。第一次使用堆叠是2008年,一个500人左右公司企业网,Cisco 29xx,公司位于同一楼层,机房就一个,4个堆叠成一个逻辑交换机(逻辑整体),一共创建了3个这样的逻辑交换机,用了12台交换机。如果不是系统对堆叠成员个数的限制、堆叠线长度的限制、以及一个机架容纳交换机个数的
目录参考一、直线检测1.1 霍夫变换直线检测——HoughLinesP1.1.1原理1.1.2 HoughlinesP()函数1.1.3 代码1.1.4 检测效果1.2 FLD算法1.2.1 报错AttributeError: module 'cv2.cv2' has no attribute 'ximgproc'1.2.2 FLD有关函数1.2.3 代码实现1.2.4 检测效果二、增强算法 参
转载
2023-08-04 16:06:00
439阅读
现在堆叠已经是我们在组件网络架构时非常常用的一种技术实现方式,它将多台物理交换机通过堆叠的方式变成逻辑上的一台交换机,增加了业务口的数量,让网络架构更清晰。所以在日常工作中如何判断两台交换机是否已经成功组建堆叠,能否保证业务稳定运行变成了一个非常重要的事情,下面我就简单介绍一下,如何判断两台交换机是否真的组建堆叠。
一、函数的值传递和引用传递1. 函数的参数如果是基本的数据类型就会生成一个副本传到函数内部
2. 函数的参数如果是引用数据类型就把引用数据类型的内存地址传到函数内部二、函数的arguments详解1. 参数的分配都是从左到右的多余的实参会被arguments接受多余的形参都被当作undefined处理总结:1. 引用传递的参数,是传递引用对象的内存地址 函数内部修改会影响到传递参数的引用对象2.
环境:Python3.8 和 OpenCV内容:Hough圆检测将直角坐标系中的一个圆映射为新坐标系中的一个点,对于原直角坐标系中的每一个圆,可以对应(a, b, r) 这样一个点,这个点即为新三维中的点。标准法实现步骤: 1.获取原图像的边缘检测图像;2.设置最小半径、最大半径和半径分辨率等超参数;3.根据转化后空间的圆心分辨率等信息,设置计数器N(a, b, r);4.对边缘检测图像的每个白色
转载
2023-12-02 21:01:28
344阅读
直线检测直线检测可以通过OpenCV的HoughLines和HoughLinesP函数来完成,它们仅有的差别是:第一个函数使用标准的Hough变换,第二个函数使用概率Hough变换,即只通过分析点的子集并估计这些点都属于一条直线的概率,这在计算速度上更快。函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength
转载
2023-12-27 21:31:33
347阅读
目录c++检测垂直线 检测所有线:python RANSAC直线检测c++C++: void HoughLinesP(InputArray image, OutputArray lines, double rho, double theta, int threshold, double minLineLength=0, double maxLineGap=0 )第一个参数,InputAr
转载
2024-01-08 17:04:27
116阅读
缺陷识别简介:这个项目是我的本科毕业设计,主要针对传送带上的木质圆形工件的缺陷识别和分类,并且进行工件的计数和缺陷工件的计数。这里我主要是识别污渍和划痕缺陷类型污渍:划痕:最后的成果sum:为工件的总个数scratch_num:为含有划痕工件的总个数blot_num:为含有污渍工件的总个数黄颜色圈住的缺陷为划痕蓝颜色圈住的缺陷为污渍简单思路通过边缘检测,得到每个工件的坐标,并计算出工件的中心来标记
转载
2023-10-10 11:01:20
490阅读
直线检测 cv2.HoughLinesP()函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None)image: 必须是二值图像,推荐使用canny边缘检测的结果图像;rho:线段以像素为单位的距离精度,double类型的,推荐用1.0theta: 线段以弧度为单位
转载
2023-10-11 09:23:32
363阅读
使用dlib,OpenCV和Python进行人脸识别--检测眼睛,鼻子,嘴唇和下巴前期文章我们分享了如何使用python与dlib来进行人脸识别,本期我们就来更细的来了解一下人脸识别的内容如下图,dlib人脸数据把人脸分成了68个数据点,从图片可以看出,人脸识别主要是识别:人眉,人眼,人鼻,人嘴以及人脸下颚边框,每个人脸的部位都有不同的数据标签从1-68当我们识别出人脸的这68个点,
转载
2024-02-24 14:10:15
118阅读
文章目录1.前言2.调用摄像头进行实时canny边缘检测3.三种检测方法的分析Sobel边缘检测**Laplacian边缘检测**Canny边缘检测4.参考博文 1.前言计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。同样,计算机能够通过检测与估计物体的结构和性质相关的特征来识别
转载
2023-10-28 11:51:18
269阅读
Python部落(python.freelycode.com)组织翻译,禁止转载,欢迎转发。利用Opencv中的Houghline方法进行直线检测---python语言在图像处理中,霍夫变换用来检测任意能够用数学公式表达的形状,即使这个形状被破坏或者有点扭曲。下面我们将看到利用HoughLine算法来阐述霍夫变化进行直线检测的原理,把此算法应用到特定图像的边缘检测是可取的。Houghline算法基
转载
2024-03-13 22:12:52
107阅读
直线检测原理核心要点:图像坐标空间、参数空间、极坐标参数空间 -> (极坐标)参数空间表决给定一个点,我们一般会写成y=ax+b的形式,这是坐标空间的写法;我们也可以写成b=-xa+y的形式,这是参数空间的写法。也就是说,给定一个点,那么经过该点的直线的参数必然满足b=-xa+y这一条件,也就是必然在参数空间中b=-xa+y这条直线上。如果给定两个点,那么这两点确定的唯一的直线的参数,就是参
转载
2024-02-26 14:00:43
26阅读
边缘检测是一种图像处理技术,用于识别图像中目标或区域的边界(边缘)。边缘是图像中最重要的特征之一。我们通过图像的边缘来了解图像的基本结构。因此,计算机视觉处理管道在应用中广泛地使用边缘检测。1.如何检测边缘?边缘的特征是像素强度的突然变化。为了检测边缘,我们需要在邻近的像素中寻找这些变化。来吧,让我们探讨一下OpenCV中可用的两种重要边缘检测算法的使用:Sobel边缘检测和Canny边缘检测。我
转载
2023-08-16 23:27:49
320阅读
简介:1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形
转载
2024-08-19 19:15:26
318阅读
3.8 轮廓检测学习目标了解图像的轮廓,知道怎么利用OPenCV查找轮廓知道轮廓的特征知道图像的矩特征1 图像的轮廓轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓是图像目标的外部特征,这种特征对于我们进行图像分析,目标识别和理解等更深层次的处理都有很重要的意义。轮廓提取的基本原理:对于一幅背景为黑色、目标为白色的二值图像,如果在图中找到一个白色点,且它的8邻域
转载
2024-01-09 20:06:28
90阅读
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。 这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。 边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构
转载
2023-09-08 23:26:43
183阅读
霍夫圆变换的工作方式与前一个教程中解释的霍夫线变换大致类似。在线检测情况下,线由两个参数定义。在圆圈情况下,我们需要三个参数来定义圆:在哪里定义中心位置(格力点)并且是半径,这允许我们完全定义一个圆,如下所示:为了提高效率,OpenCV实现了一种比标准Hough变换稍微复杂的检测方法:霍夫梯度法。有关详细信息,请查看学习OpenCV或您最喜欢的计算机视觉参考书目代码这个程序做什么用的?加载图像并模
转载
2023-10-08 23:42:13
416阅读