花瓣网,是国内著名的图片阅览网。有很多极具设计想法的图片,设计师可以在这里查找灵感。今天,就来做一个爬虫,爬指定的图片。第一步,分析花瓣网的AJAX进入花瓣网,是个搜索框。输入一个“网页设计”,进入搜索结果页面。往下拉动,图片还会自动增加,很明显这个是AJAX的结果。F12,查看 network,分析下载的文件。主要分析 XHR(就是 XMLHttpRequest,AJAX 请求)。记得勾选“Pr
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类器 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数
rgb = io.imread(f) # 读取图片
gray =
转载
2024-03-03 10:11:20
157阅读
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类器 流程: 收集样本,处理样本 训练分类器 目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
转载
2023-11-18 10:18:07
73阅读
这是一篇学习量很大的文章观前提醒,本篇文章涉及知识点巨大,建议先收藏,再慢慢学习。本篇文章目的将为你详细罗列 Python OpenCV 的学习路线与重要知识点。核心分成 24 个小节点,全部掌握,OpenCV 入门阶段就顺利通过了。OpenCV 初识与安装本部分要了解 OpenCV (Open Source Computer Vision Library)的相关简介,OpenCv 可以运行在多平
OpenCV训练分类器
一、简介
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。
 
转载
2023-11-14 10:39:28
60阅读
一、简介 目标检测方法最初由PaulViola提出,并由Rainer Lienhart对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的harr 特征进行分类器训练,得到一个级联的boosted分类器。分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在
转载
2023-11-28 22:39:21
89阅读
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。训练样本分为正例样本和反例样本,其中正例样本是指
转载
2024-01-02 11:16:18
33阅读
前言 红胖子,来也! 做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了。 识别可以自己写模板匹配、特征点识别、级联分类器训练识别。 本文章就是讲解级联分类器的训练与识别。明确目标 目标是识别视频中的歌手,我们先手动采集数据集合。 视频为《绿色》,如下图: 训练分类器前的准备工作采集正样本
转载
2023-08-16 23:14:16
144阅读
图1 强分类器和弱分类器示意图 这篇文章将结合OpenCV-2.4.11中自带的haarcascade_frontalface_alt2.xml文件介绍整个级联分类器的结构。需要说明,自从2.4.11版本后所有存储得XML分类器都被替换成新式XML,所以本文对应介绍新式分类器结构。(一)XML的头部 在
转载
2024-01-02 20:20:02
69阅读
# 使用 OpenCV 与 Java 处理图像中的花屏现象
在数字图像处理中,“花屏”通常指图像的颜色失真、像素错位等现象。这种问题通常由传输错误、硬件故障或图像解码错误引起。为了有效处理和修复图像花屏现象,我们可以使用 OpenCV,这是一款开源的计算机视觉库,广泛应用于图像分析和处理。本文将详细说明如何在 Java 环境中使用 OpenCV 处理图像花屏现象,并提供流程图、代码示例以及相关解
0_QT多页面切换(避免花屏)切换页面几种方法例子如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入 切换页面几种方法1.使用show(),与close(),这种方式切换较慢,每次需要重新加载页
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
转载
2023-11-15 19:19:41
71阅读
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类器一、项目结构二、源码1.程序入口int main(void)
{
//int clusters=1000;
//Classfication_SVM c(clusters);
特征聚类
//c.Tra
转载
2024-03-25 17:39:24
150阅读
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类器3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
转载
2024-04-24 13:27:58
84阅读
设置显示器属性,将屏幕扩展到第二屏(采用扩展模式)。在VC编程时,可以检测到第二屏的信息(甚至多屏),比如屏的个数,各个屏的分辨率,各个屏的句柄,获得了这些信息后,就可以在第二屏上操作了,比如 画图之类。 在编程中要用到相关的结构体和函数,这些都已经包装好,在multimom.h头文件中,该头文件VC自带有。在要用的的地方包
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类器训练人脸检测的样本与相关文件1 、opencv里的分类器大概介绍: OpenCV中有两个程序可以训练级联分类器: opencv_haartraining and opencv_traincascade``。 ``opencv_tra
转载
2024-05-01 14:19:08
31阅读
在计算机视觉领域,使用 OpenCV 进行图像处理和训练分类器已经成为一个热门话题。在这篇博文中,我们将深入探讨如何利用 OpenCV 和 Python 训练分类器的过程,包括背景定位、演进历程、架构设计、性能攻坚、复盘总结以及扩展应用。希望能帮助开发者和技术人员更好地理解这一过程。
## 背景定位
在现代工业和商业中,图像分类是一个广泛应用的需求。无论是监控视频分析、自动驾驶还是产品质量检测
一、人脸检测算法分类 目前人脸检测方法主要分为两大类,基于知识和基于统计。基于知识的人脸检测方法主要包括:模板匹配,人脸特征,形状与边缘,纹理特征,颜色特征。基于统计的人脸检测方法主要包括:主成分分析与特征脸法,神经网络模型,隐马尔可夫模型,支持向量机,Adaboost算法。基于知识的方法将人脸看成不同特征的特定组合,即通过人脸的眼睛、嘴巴、鼻子、耳朵等特征及其组合关系来检测人脸。基于统计的方法将
OpenCV训练分类器一、简介
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。
分类器中的"级联
转载
2023-08-16 23:15:53
114阅读
支持向量机:将不同类样本在样本空间进行分割,得出一个间隔最大超平面。调用OpenCV中SVM分类器流程如下:1)建立训练样本注意:CvSVM的train函数要求训练样本存储在float类型的Mat结构中,故需将训练数据存储为符合条件的Mat变量中。2)设置SVM分类器参数注意:此处主要涉及到SVM分类器相关参数设置。下面是自己对SVM分类器相关参数总结。 参数介绍 degree:内核函数
转载
2024-01-28 19:59:47
49阅读