OpenCV训练分类器一、简介
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。
分类器中的"级联
转载
2023-08-16 23:15:53
114阅读
前言 红胖子,来也! 做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了。 识别可以自己写模板匹配、特征点识别、级联分类器训练识别。 本文章就是讲解级联分类器的训练与识别。明确目标 目标是识别视频中的歌手,我们先手动采集数据集合。 视频为《绿色》,如下图: 训练分类器前的准备工作采集正样本
转载
2023-08-16 23:14:16
144阅读
图1 强分类器和弱分类器示意图 这篇文章将结合OpenCV-2.4.11中自带的haarcascade_frontalface_alt2.xml文件介绍整个级联分类器的结构。需要说明,自从2.4.11版本后所有存储得XML分类器都被替换成新式XML,所以本文对应介绍新式分类器结构。(一)XML的头部 在
转载
2024-01-02 20:20:02
69阅读
你的桌面是否像这样的一样被各种文件给堆满了,但是每一个文件又不清楚是否后面还有作用,也不敢删除,自己一个一个转移又太麻烦了。没关系,今天我带大家用python一起来做一个文件归类器,一键进行分类,再也不会看到满满当当的桌面了。库 我们今天需要导入的os、shutil、glob这三个库,os用来对路径的处理
一、人脸检测算法分类 目前人脸检测方法主要分为两大类,基于知识和基于统计。基于知识的人脸检测方法主要包括:模板匹配,人脸特征,形状与边缘,纹理特征,颜色特征。基于统计的人脸检测方法主要包括:主成分分析与特征脸法,神经网络模型,隐马尔可夫模型,支持向量机,Adaboost算法。基于知识的方法将人脸看成不同特征的特定组合,即通过人脸的眼睛、嘴巴、鼻子、耳朵等特征及其组合关系来检测人脸。基于统计的方法将
OpenCV支持的目标检测的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification)。注意,新版本的C++接口除了Haar特征以外也可以使用LBP特征。先介绍一下相关的结构,级联分类器的计算特征值的基础类FeatureEvaluator,功能包括读操作read、复制clone、获得特征类型getFeatureType,分配图片分配
转载
2024-07-27 22:32:16
22阅读
文章目录级联增强分类器的原理一、图像模型及分类方法二、HAAR特征1.引入库分类器构建具体操作停止条件最终精度 级联增强分类器的原理对于大多数机器学习算法,训练样本是一个迭代过程,构建训练模型时要循环遍历全部样本。这样创建的分类器的效果会随着样本的增加而逐步提高。一旦效果达到某个特定标准,或者对于当前训练集已经无法继续提升效果,就可以终止学习过程,如级联增强分类器。一、图像模型及分类方法先从图像
转载
2024-04-03 07:15:21
88阅读
网上提供的级联分类器训练都是基于opencv_haartraining。照着上面的步骤成功训练出了xml,但是用于识别的过程中,识别率很低。改换几次样本后,检测效果还是一般。想想估计是自haar特征不能很好区分,所以想通过opencv_traincascade训练下Lbp。将经验写下来,供自己以后回顾和其它人参考。 工具/原料 opencv2.1 (2.0版本以上均可) 方法/步骤
转载
2024-05-27 15:58:46
79阅读
文章目录一、CascadeClassifier的简介:Haar特征:LBP特征:HOG特征:
原创
2022-08-26 10:35:45
1042阅读
adaboost haar分类器训练1(opencv2.4.10版本)使用createPositiveSamples制作工具opencv_createsamples.exe,来制造正样本。(1)建立一个名为xx.bat批处理文件,其内容大概如下:cd D:\test\createPositiveSamples\byIndividualImage//进入分类器制作工具所在的文件目录 opencv_c
转载
2024-07-26 18:50:09
46阅读
介绍
级联分类器包括两部分:训练和检测。 检测部分在OpenCV objdetect 模块的文档中有介绍,在那文档中给出了一些级联分类器的基本介绍。这个指南是描述如何训练分类器:准备训练数据和运行训练程序。
重点注意事项
OpenCV中有两个程序可以训练级联分类器: opencv_haartraining and opencv_traincascade``。 ``opencv_traincas
转载
2014-03-30 23:57:00
139阅读
2评论
1 #include "opencv2/objdetect/objdetect.hpp"
2 #include "opencv2/highgui/highgui.hpp"
3 #include "opencv2/imgproc/imgproc.hpp"
4
5 #include <iostream>
6 #include <stdio.h>
7
转载
2020-01-09 13:44:00
157阅读
2评论
基于opencv2.0的haar算法以人脸识别为例的训练分类器xml的方法基于opencv2.0的算法第一步 采集样本 1、 将正负样本分别放在两个不同的文件夹下面 分别取名pos和neg,其中pos用来存放正样本图像,neg用来存放负样本注意事项:1、
文章目录 训练级联分类器使用级联分类器检测总结 前言 最近在尝试识别指定物体,之前用Opencv自带的级联分类器做过人脸识别感觉效果不错,所以想用级联分类器来做其它物体的识别。 选择学习这种传统目标检测算法,主要是迎合电赛上的需求。虽然深
转载
2024-01-25 20:38:34
118阅读
文章目录Haar特征和级联分类器目标检测介绍及应用1. Haar特征2. 级联分类器3. 实现步骤4.尝试训练自己的级联分类器4. 应用示例 Haar特征和级联分类器目标检测介绍及应用Haar特征和级联分类器是一种经典的目标检测算法,适用于检测物体在图像中的位置、大小和姿态等。本教程将详细介绍Haar特征和级联分类器的原理、实现和应用。1. Haar特征Haar特征是一种图像处理中的特征提取方法
转载
2024-06-13 17:55:53
452阅读
文章目录前言一、级联分类器简介二、训练步骤1.采集图像2.图像处理2.1 图像文件重命名2.2 裁剪ROI区域2.3 批量灰度化及压缩3 制作样本数据3.1 正样本制作3.2 负样本制作4.生成正样本矢量文件5.开始训练6.结果总结 前言因为导师的一个项目,笔者近期在学习如何训练一个基于级联分类的目标识别器。笔者选取螺钉作为例子,训练一个基于级联分类的螺钉识别器。一、级联分类器简介级联分类器是一
转载
2024-10-01 11:28:44
248阅读
API说明:1 cv::CascadeClassifier::detectMultiScale(InputArray image,//输入灰度图像2 CV_OUT std::vector<Rect>& objects,//返回目标的外接矩形 3
转载
2018-10-27 16:20:00
313阅读
Cascade Trainer GUI一、简介 Cascade Trainer GUI 是一个可用于训练、测试和改进级联分类器模型的程序。 它使用图形界面来设置参数,并且可以轻松使用 OpenCV 工具来训练和测试分类器。2.安装 2.1。 先决条件 目前 Cascade Trainer GUI 可以在 Windows(7 或更高版本)上使用。 安装过程非常简单,只需按下几个“下一步”按钮。3.
通过OpenCV自带的特征分类器和函数,实现一个简易版的人脸识别,在程序执行前,先了解一下OpenCV相关知识haar特征分类器的使用: 1.图像识别理论:知识+经验
2.haar特征分类器
正样本+负样本进行训练
haar特征、卷积算法、分类决策、级联
Ca
转载
2024-07-16 12:57:30
82阅读
本次内容主要讲解什么是支持向量,SVM分类是如何推导的,最小序列SMO算法部分推导。 最后给出线性和非线性2分类问题的smo算法matlab实现代码。 一、什么是支持向量机(Support Vector Machine) 本节内容部分翻译Opencv教程: http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introdu