# Python猫狗分类实验总结
在这篇文章中,我们将对Python猫狗分类实验的实施步骤进行详细总结。整个实验流程分为几个阶段:数据准备、数据探索、模型构建、模型训练和模型评估。下面我们将用表格展示整个步骤,并详细解释每一步所需的代码。
## 实验流程
| 阶段 | 任务 |
| ------------ | -
网络的输出层设置两个神经元的原因:神经网络有两个输出值对应两种类别,通过学习数据的不同特征,让两种类别在输出上有体现,即0趋近于猫,1趋近于狗。宏观上来看,神经网络具有了辨识猫狗的能力。训练过程中,有对GT由一维处理成二维的操作,目的也是为了和神经网络二维的输出进行匹配。程序1中测试程序有误。程序2进行了修改,修改后在12000张图片中正确率达到了90%,浮动在2%以内,二分类的全连接网络效果还是
转载
2023-11-02 23:01:43
86阅读
前言预训练模型顾名思义就是使用别人已经训练好的模型参数放到自己的任务里面进行特定任务的微调。这里的模型参数包括:神经网络的结构、神经网络的权值参数。 本博客将尝试使用预训练模型进行猫狗分类。 代码地址:https://github.com/jmhIcoding/dogsVScats.git实验所用数据集及工具数据集本实验使用实验数据基于kaggle Dogs vs. Cats 竞赛提供的官方数据集
本文是基于pytorch框架,以ResNet网络为基础模型(只是用了残差结构,和论文里提出的多个ResNet网络的结构不一样,没写的那么复杂),实现的猫狗识别,分以下几个部分 目录相关库的导入设置各种参数数据预处理数据集的读取数据集的获取数据集的存放位置实现残差块结构主体网络的实现训练和测试过程 相关库的导入import torch.optim
import torch.utils.data
im
转载
2023-12-26 12:55:00
376阅读
猫狗分类CNN实验环境编译器 :win10+python3.7.4+pycharm2018库: anaconda+pytorch+tensorflow+tensorboardX硬件 gpu(可以没有)性能:accuracy:准确度大概稳定在0.6左右。这是在二分类的情况下。如果测试自己的图片,也就是存既不是猫也不是狗的概率的话,肯恶搞准确度会更低。loss:约为0.02Ⅰ、解决方法一、数据集
转载
2023-08-09 21:12:58
494阅读
## Pytorch 图像分类教程。 在实践中,对猫和狗进行分类可能有些不必要。但对我来说,它实际上是学习神经网络的一个很好的起点。在本文中,我将分享我执行分类任务的方法。可以通过访问要使用的数据集。以下是这篇文章的大纲: 1. 导入模块和设置设备 2. 加载图像和创建标签 3. 预处理和数据扩充 4. 自定义数据集类和数据加载器
转载
2023-12-15 11:56:23
67阅读
文章目录1.制作数据集2.搭建网络训练3.输入图片测试 1.制作数据集(1)下载数据集。从网上下载kaggle猫狗分类的数据集,为缩短训练时间,选择2000张图片(猫狗各1000张)作为训练集,200张图片(猫狗各100张)作为测试集。在train文件夹选0-1999的猫和0-1999的狗作为训练集,选2000-2099的猫和2000-2099的狗作为测试集。(2)调整图片的大小。图片大小不一,
转载
2024-01-15 01:19:07
149阅读
描述新一年度的猫狗大战通过SC(星际争霸)这款经典的游戏来较量,野猫和飞狗这对冤家为此已经准备好久了,为了使战争更有难度和戏剧性,双方约定只能选择Terran(人族)并且只能造机枪兵。比赛开始了,很快,野猫已经攒足几队机枪兵,试探性的发动进攻;然而,飞狗的机枪兵个数也已经不少了。野猫和飞狗的兵在飞狗的家门口相遇了,于是,便有一场腥风血雨和阵阵惨叫声。由于是在飞狗的家门口,飞狗的兵补给会很快,野猫看
转载
2023-12-11 09:18:41
171阅读
1-《Tensorflow入门图像分类-猫狗分类-安卓》2-《TensorFlow入门图像分类-猫狗分类-MobileNet优化》
最近在温习 Tensorflow,写了一篇笔记,记录了使用 Tensorflow 训练一个猫狗图像分类器的模型并在安卓应用上使用的全过程。一、数据集准备1.1 数据集来源 &nbs
转载
2023-12-24 11:09:19
706阅读
# Python猫狗分类实现指南
作为一名经验丰富的开发者,我将帮助你了解如何实现Python猫狗分类。在本文中,我将向你介绍整个流程,并提供每一步所需的代码和注释。
## 流程概览
下面是完成Python猫狗分类的整个流程。我们将使用机器学习算法来训练一个模型,以便能够根据图片识别出猫和狗。
```mermaid
stateDiagram
[*] --> 数据收集
数据收集
原创
2023-08-26 14:48:39
354阅读
【作业向】 根据给定的猫狗分类数据集,对比 单层CNN模型、从头训练CNN模型(mobileNet)、微调预训练CNN模型(mobileNet)的差异。生成的模型的正向传播图使用PyTorch实现。 本文代码(数据集在同目录下) 文章目录关于数据集建立Dataset对象模型1:单层卷积+单层池化+全连接定义训练和评估函数模型2:从头训练(MobileNet)模型3:预训练模型+微调(MobileN
转载
2023-11-15 15:10:54
189阅读
迁移学习——猫狗分类(PyTorch:自定义 VGGNet 方法)1 迁移学习入门2 数据集处理2.1 验证、测试数据集2.2 数据预览3 模型搭建和参数优化3.1 自定义 VGGNet3.1.1 搭建一个简化版的 VGGNet 模型3.1.2 完成参数迁移3.1.3 举例说明3.2 迁移 VGG163.3 迁移 ResNet50 用两种方法来通过搭建卷积神经网络模型对生活中的普通图片进行分类
转载
2023-12-19 11:29:56
10000+阅读
在计算机视觉图像分类中,在实践过程中会经常遇到样本数量很少的情况。很少的样本可能是几百张图像或者几万张图像,在小样本上如何训练一个泛化能力强的模型是一个很值得探讨的问题,中间有不少过程需要我们进行优化。在这里使用通用的猫狗样本进行二分类模型的训练,在训练的过程中来研究怎样采取一些措施提高模型预测的准确率。1 训练样本的下载猫狗的分类样本采用kaggle上的猫狗样本,网址为: https://www
转载
2024-01-25 18:17:35
239阅读
学校自然语言处理的第一次大作业,之前没有过python基础,更不会pytorch,花了些功夫算是勉强完成了作业,用这篇博客记录一下。代码不够好,模型准确率也不够高,算是提供一个小白视角吧~ 0.作业描述实验目的1.掌握卷积神经网络、循环神经网络等深度学习的各项基本技术。2.加强对pytorch、ten
转载
2024-06-14 22:05:53
359阅读
Kaggle的数据大部分时候和实际应用场景相去甚远。除了简历上的项目经历,Kaggle项目以及相应被分享出来的代码不会直接有助于工作本身。Kaggle更多是一种算法与实际问题结合的实验。尽管如此,Kaggle仍然是目前所能找到的最接近工作和业务场景的平台。而且它不失为一个非常好的练习编程能力的工具。同时,它为数据科学提供了趣味性和专业性,甚至为程序员、数据工作者们提供了一个社交平台。这次分享的是找
转载
2023-08-03 12:25:17
167阅读
使用Tensorflow 2进行猫狗分类识别
本文参照了大佬Andrew Ng的所讲解的Tensorflow 2视频所写,本文将其中只适用于Linux的功能以及只适用于Google Colab的功能改为了普适的代码同时加入了自己的理解,尚处学习与探索阶段,能力有限,希望大家多多指正。文章所需代码均在Jupyter Notebook当中实现。 目录
使用Tens
转载
2024-03-28 14:08:42
150阅读
目录需求方法一、数据的路径结构二、图像数据载入三、模型搭建四、损失函数、优化函数定义五、模型训练和参数优化总结需求实现猫狗图像二分类,数据描述如下这个数据集的训练数据集中一共有25000张猫和狗的图片,其中猫、狗各12500张。在测试数据集中有12500张图片,其中猫、狗图片无序混杂,且无对应的标签。
官方网站:https://www.kaggle.com/c/dogs-vs-cats-redux
转载
2024-05-19 10:54:00
315阅读
已经在深度学习方面潜水了很久,理论知识了解个大概,代码能力相差很远,至于为什么写这行代码,每个句子的功能是什么,了解的一塌糊涂,为熟悉深度学习的应用和提高Code水平,现使用Keras搭建CNN对猫狗进行分类。 本文结构:1、数据集;2、网络设计;3、训练网络;4、测试网络。1、数据集对于刚入门的新手,数据集处理是一个很困难的操作,一般数据集可以从tensorflow的kreas导入或使用自己
转载
2023-11-14 09:40:06
133阅读
目录猫狗分类数据处理下载数据集解压数据集确定路径打印数据名获取每种数据的数量数据集可视化引入头文件绘图设计训练模型引入头文件设计模型打印模型相关信息进行优化方法选择和一些超参数设置数据处理(利用ImageDataGenerator自动打标签)进行训练使用我们自己的图片进行验证可视化隐藏层绘制精度和损失曲线终止程序 猫狗分类内容总结自吴恩达TensorFlow2.0的课程 不同于之前在人造的数据集
转载
2024-03-24 15:23:02
26阅读
目录一.数据处理 二.构造网络三.训练和测试四.展示结果一.数据处理 Dogs vs. Cats(猫狗大战),其中训练集有20000张,猫狗各占一半,验证集20000,测试集2000张,没有标定是猫还是狗。要求设计一种算法对测试集中的猫狗图片进行判别,是一个传统的二分类问题。 拿到数据,先查看数据集,可以看到图片的大小均不一致且没有y值。所以我们需要自
转载
2023-10-18 19:32:13
320阅读