阅读提示本文将提到Python数据分析与挖掘中的数据探索与数据特征分析 目录阅读提示一、数据探索1、数据质量的分析2、异常值的分析3、一致性分析二、数据特征分析1、分步分析2、对比分析3、统计量分析4、周期性分析5、贡献度分析6、相关性分析 一、数据探索 根据观测、调查收集到初步的样本数据集后,接下来要考虑的问题是:样本数据集的数量和质量是否满足模型构建的要求?
LSTM多特征预测python代码实现
在数据科学快速发展的今天,时间序列预测变得愈加重要。特别是在金融、天气、交通等领域,如何有效利用多特征数据进行准确预测,是许多研究者和工程师亟待解决的问题。从2015年开始,LSTM(长短期记忆网络)成为处理此类问题的热门选择之一。本文将详细探讨如何使用LSTM实现多特征预测,并通过 Python 代码实现这一过程。
> 2015年:LSTM得到广泛应用
目录I. 前言II. seq2seqIII. 代码实现3.1 数据处理3.2 模型搭建3.3 模型训练/测试3.4 实验结果IV. 源码及数据 I. 前言系列文章:深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)PyTorch搭建LSTM实现时间序列预测(负荷预测)PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测PyTorch搭建LSTM实现
转载
2023-11-30 22:10:47
602阅读
1评论
目录一、线性回归概念二、特征方程三、求解方法1、最小二乘法(LSM)2、梯度下降四、优化方法1、数据归一化/标准化2、过拟合的处理3、欠拟合的处理4、正则化介绍 五、评价指标1、代价函数:2、R方系数六、案例实战代码一、线性回归概念
转载
2024-07-11 17:08:15
399阅读
TextRNN@目录TextRNN1.基本概念1.1 RNN和CNN的区别1.2 RNN的几种结构1.3 多对多的RNN1.4 RNN的多对多结构1.5 RNN的多对一结构1.6 RNN的缺点2.实验2.1 实验步骤2.2 算法模型1.基本概念1.1 RNN和CNN的区别并非刚性地记忆所有固定⻓度的序列,⽽是通过隐藏状态来存储之前时间步的信息1.2 RNN的几种结构一对一,一对多,多对一,多对多(
本文尝试应用长短期记忆(LSTM,Long Short-Term Memory)神经网络模型对月度时序数据进行预测,样本时序数据时间跨度2017年1月至今,同时对多个目标变量时序数据进行预测。本文主要参考了《python预测之美》部分章节内容,暂不做详尽的理论说明与代码解释,仅做个人积累记录使用,如有侵权或不合规请及时联系处理~目录1、样本数据获取2、数据预处理3、重构数据结构,划分训练集与测试集
转载
2024-01-04 00:38:08
320阅读
ProClaim:之前一直在做CNN的一些研究,最近刚刚回到实验室,定下来了自己的小组,然后开始了一些LSTM的学习。将近学习了两天半吧,结构弄得差不多了,Theano上LSTM tutorial 的例程也跑了跑,正在读代码ing。这篇博客主要是我之后要做的一个小报告的梗概,梳理了一下LSTM的特点和适用性问题。发在这里权当做开博客压压惊。希望之后能跟各位朋友多多交流,共同进步。1. 概
转载
2024-01-29 05:20:46
143阅读
循环神经网路基本的循环神经网络下图是一个简单的循环神经网络,它由输入层、隐藏层和一个输出层组成。 其中,x 是输入层的值,U是输入层到隐藏层的权重,s是隐藏层的输出的值,V是隐藏层到输出层的权重,o是输出,环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。如果将上图展开,就如下图所示: 现在看上去就比较清楚
分类预测 | Matlab实现LSTM-Multihead-Attention多特征分类预测
原创
精选
2024-06-07 15:38:54
261阅读
目前来看表格类的数据的处理还是树型的结构占据了主导地位。但是在时间序列预测中,深度学习神经网络是有可能超越传统技术的。为什么需要更加现代的时间序列模型?专为单个时间序列(无论是多变量还是单变量)创建模型的情况现在已经很少见了。现在的时间序列研究方向都是多元的,并且具有各种分布,其中包含更多探索性因素包括:缺失数据、趋势、季节性、波动性、漂移和罕见事件等等。通过直接预测目标变量往往是不够的,我们优势
### Python Prophet多特征预测
在数据科学领域,时间序列预测是一项重要的工作。Python中有许多强大的工具可以用来进行时间序列预测,其中Prophet是一个非常流行的工具之一。Prophet是由Facebook开发的开源预测工具,可以用于预测时间序列数据。在Prophet中,我们可以通过添加多个特征来提高时间序列预测的准确性。
**如何在Python中使用Prophet进行多
原创
2024-04-09 05:23:21
640阅读
提到回归算法,我想很多人都会想起线性回归,因为它通俗易懂且非常简单。但是,线性回归由于其基本功能和有限的移动自由度,通常不适用于现实世界的数据。实际上,它只是经常用作评估和研究新方法时进行比较的基准模型。在现实场景中我们经常遇到回归预测问题,今天我就给大家总结分享 5 种回归算法。1、神经网络回归理论神经网络的强大令人难以置信的,但它们通常用于分类。信号通过神经元层,并被概括为几个类。但是,通过更
目录I. 前言II. 多步预测2.1 直接多输出2.2 单步滚动预测2.3 多模型单步预测2.4 多模型滚动预测2.5 seq2seq预测III. 源码及数据 I. 前言在PyTorch搭建LSTM实现多变量多步长时间序列预测(负荷预测)中我简单实现了一下LSTM的多变量多步预测,其中LSTM搭建如下:class LSTM(nn.Module):
def __init__(self, i
转载
2023-08-12 19:33:30
159阅读
目录I. 多模型滚动预测II. 代码实现2.1 数据处理2.2 模型搭建2.3 模型训练/测试2.4 实验结果III. 源码及数据 I. 多模型滚动预测所谓多模型滚动预测:还是前10个预测后3个为例:首先需要按照多模型单步预测的方式训练3个模型,然后模型1利用[1…10]预测[11’],然后模型2利用[2…10 11’]预测[12’],最后由模型3利用[3…10 11’ 12’]预测[13’]。
转载
2023-10-12 10:15:26
441阅读
LSTM结构 参数介绍: 分步介绍: 遗忘门 (forget gates) 传入门 (input gates)
更新 cell 状态
cell 输出
LSTM 的变种 GRU: GRU
数学原理: 公式参数: xt∈Rd
x
LSTM多维度特征的资金流预测项目背景观察数据进行处理特征选择代码实现得到结果预测图 项目背景本篇主要是使用天池比赛中余额宝资金流的数据,已知在2013年7月1日至2014年8月31日内余额宝每日申购和赎回的资金流,通过使用python对数据进行处理之后用LSTM进行回归预测,再进行回测来检验模型。观察数据进行处理首先是对这427天数据的整体分布进行观察,申购的资金流分布如下: 可以看出数据的整
LSTM是RNN的改进型,传统RNN模型会随着时间区间的增长,对早期的因素的权重越来越低,有可能会损失重要数据。而LSTM模型通过遗忘门、输入门、输出门三个逻辑,来筛选和保留数据。 原理详解可以参考如何从RNN起步,一步一步通俗理解LSTM这个博主讲的非常通俗易懂,本文主要是项目实操。实验环境Windows11、python3.8、Keras框架、Tensorflow实验目的使用新冠疫情历史每日新
转载
2023-10-07 13:34:46
681阅读
传统的神经网络一般都是全连接结构,且非相邻两层之间是没有连接的。对输入为时序的样本无法解决,因此引入了RNN(可以查看具体的RNN含义和推导),但是会存在梯度消失(不同的隐层之间会存在过去时刻对当前时刻的影响因素,但随着时间跨度的变大这种影响会削弱)。因此引入LSTM1 LSTM算法小结 LSTM:是对RNN算法的改
转载
2023-12-19 21:28:02
55阅读
一、lstm介绍长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题,目前比较流行。二、理论介绍2.1长短时记忆网络的思路:原始 RNN 的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。再增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。上图是lstm的
转载
2023-08-30 10:44:42
183阅读
在本文中我们将使用深度学习方法 (LSTM) 执行多元时间序列预测。我们先来了解两个主题——什么是时间序列分析?什么是 LSTM?时间序列分析:时间序列表示基于时间顺序的一系列数据。 它可以是秒、分钟、小时、天、周、月、年。 未来的数据将取决于它以前的值。在现实世界的案例中,我们主要有两种类型的时间序列分析——单变量时间序列多元时间序列对于单变量时间序列数据,我们将使用单列进行预测。正如我们所见,
转载
2023-08-12 20:12:01
22阅读