KL、交叉熵与JS度数学公式以及代码例子1.1 KL 概述 KL ,Kullback-Leibler divergence,(也称相对熵,relative entropy)是概率论和信息论中十分重要的一个概念,是两个概率分布(probability distribution)间差异的非对称性度量。对离散概率分布的 KL 计算公式为:对连续概率分布的 KL 计算公
信息量 事件发生的概率越小,信息量越大。 假设 是一个离散型随机变量,取值集合为 ,概率分布函数为 则定义事件 的信息量为: 信息熵 信息量的期望就是熵,假设事件 有n种可能,发生 的概率为 ,那么该事件的熵 为: 如果发生的事件只有两种可能性,那么熵的计算转化为下列式子: 相对熵(KL/KL divergence)
KL(Kullback-Leibler divergence)概念:KL( Kullback-Leibler divergence)也被称为相对熵,是一种非对称度量方法,常用于度量两个概率分布之间的距离。KL也可以衡量两个随机分布之间的距离,两个随机分布的相似越高的,它们的KL越小,当两个随机分布的差别增大时,它们的KL也会增大,因此KL可以用于比较文本标签或图像的相似性
计算KL是一种衡量两个概率分布之间差异的重要工具,尤其在信息论与机器学习领域中广泛应用。在这篇博文中,我们将通过多个维度对如何在Python中计算KL进行详细分析与实战分享。 ## 适用场景分析 KL适用的场景包括但不限于模型评估、异常检测、推荐系统、自然语言处理等。在这些场景中,您可能需要量化不同模型或者数据之间的相似性,KL将是一个重要的度量标准。 ```mermaid
原创 5月前
40阅读
KL(Kullback-Leibler divergence),也称为相对熵,是用于测量两个概率分布 ( P ) 和 ( Q ) 差异的度量。假设 ( P ) 和 ( Q ) 是离散概率分布,KL定义为:其中 ( X ) 是所有可能事件的集合,( P(x) ) 和 ( Q(x) ) 分别是事件 ( x ) 在两个分布中的概率。对于连续概率分布,KL公式变为:这里 ( p(x) ) 和
KL与JSKL(Kullback-Leibler divergence)KL的计算公式KL的基本性质JS(Jensen-Shannon divergence)JS的数学公式不同于KL的主要两方面 KL(Kullback-Leibler divergence)又称KL距离,相对熵。KL是描述两个概率分布P和Q之间差异的一种方法。直观地说,可以用来衡量给定任意分布
本篇博客将学习压缩 JS 代码,首先要学习的模块是 jsmin。jsmin 库Python 中的 jsmin 库来压缩 JavaScript 文件。这个库可以通过删除不必要的空格和注释来最小化 JavaScript 代码。库的安装在控制台使用如下命令即可安装,注意如果网络不好,请切换国内源。pip install jsminjsmin 库代码示例在压缩前,请提前准备一个未被压缩的 JS 文件,便于
# Python中的KL计算及其应用 KL(Kullback-Leibler Divergence)是一种用来衡量两个概率分布之间差异的统计量。它特别适用于信息论和机器学习领域。KL公式定义为: \[ D_{KL}(P \parallel Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)} \] 其中,\( P \) 和 \( Q \) 是两个概
KL公式是假设真实分布为,我们想用分布去近似,我们很容易想到用最小化KL来求,但由于KL是不对称的,所以并不是真正意义上的距离,那么我们是应该用还是用?下面就来分析这两种情况:正向KL: 被称为正向KL,其形式为: 仔细观察(1)式,是已知的真实分布,要求使上式最小的。考虑当时,这时取任何值都可以,因为这一项对整体的KL没有影响。当时,这一项对整体的KL就会产生影响,
转载 2023-09-15 16:14:39
474阅读
KL 又叫 相对熵,是衡量 两个概率分布 匹配程度的指标,KL 越大,分布差异越大,匹配越低 计算公式如下 或者  其中 p是 目标分布,或者叫被匹配的分布,或者叫模板分布,q 是去匹配的分布;试想,p 是真实值,q 是预测值,岂不是 个 loss function; 性质如果 两个分布 完全匹配,Dkl=0;KL 是非对称的,即 D
转载 2023-07-31 21:32:10
340阅读
写在前面大家最近应该一直都有刷到ChatGPT的相关文章。小喵之前也有做过相关分享,后续也会出文章来介绍ChatGPT背后的算法——RLHF。考虑到RLHF算法的第三步~通过强化学习微调语言模型的目标损失函数中有一项是KL,所以今天就先给大家分享一篇与KL相关的文章。0. KL概述KL(Kullback-Leibler Divergence,KL Divergence)是一种量化两
K-L Kullback-Leibler Divergence,即K-L,是一种量化两种概率分布P和Q之间差异的方式,又叫相对熵。在概率学和统计学上,我们经常会使用一种更简单的、近似的分布来替代观察数据或太复杂的分布。K-L能帮助我们度量使用一个分布来近似另一个分布时所损失的信息。 K-L定义见文末附录1。另外在附录5中解释了为什么在深度学习中,训练模型时使用的是Cros
转载 2023-07-29 13:30:32
257阅读
两者都可以用来衡量两个概率分布之间的差异性。JSKL的一种变体形式。KL:也称相对熵、KL距离。对于两个概率分布P和Q之间的差异性(也可以简单理解成相似性),二者越相似,KL越小。KL的性质:●非负性。即KL大于等于零。●非对称性。即运算时交换P和Q的位置,得到的结果也不一样。(所以这里严格来讲也不能把KL称为KL距离,距离一定符合对称性,所以要描述准确的话还是建议用
转载 2月前
416阅读
完美列函数给定一组数据项, 如果一个列函数能把每个数据项映射到不同的槽中, 那么这个列函数就可以称为“完美列函数”对于固定的一组数据,总是能想办法设计出完美列函数但如果数据项经常性的变动, 很难有一个系统性的方法来设计对应的完美列函数当然,冲突也不是致命性的错误,我们会有办法处理的。获得完美列函数的一种方法是扩大列表的容量, 大到所有可能出现的数据项都能够占据不同的槽但这种方法对于
        KL(Kullback-Leibler divergence)是一种用来衡量两个概率分布之间的差异性的度量方法。它的本质是衡量在用一个分布来近似另一个分布时,引入的信息损失或者说误差。KL的概念来源于概率论和信息论中。KL又被称为:相对熵、互熵、鉴别信息、Kullback熵、Kullback
# 如何实现Python KL ## 简介 在开始介绍如何实现Python KL之前,我们先来了解一下什么是KLKL(Kullback-Leibler divergence),也称为相对熵,是用来衡量两个概率分布之间的差异性的一种方法。在机器学习和信息论中,KL经常被用来作为两个概率分布P和Q之间的差异性度量。 在本篇文章中,我们将教会刚入行的小白如何实现Python K
原创 2023-10-13 09:39:33
139阅读
KL
转载 2019-01-16 10:13:00
479阅读
2评论
全称:Kullback-Leibler Divergence 用途:比较两个概率分布的接近程度 在统计应用中,我们经常需要用一个简单的,近似的概率分布 f∗ 来描述 观察数据 D 或者另一个复杂的概率分布 f 。这个时候,我们需要一个量来衡量我们选择的近似分布 f∗ 相比原分布 f 究竟损失了多少信息量,这就是KL起作用的地方。熵(entropy)想要考察 信息量 的损失,就要先
转载 2023-10-06 22:14:05
258阅读
from KL( KL divergence)全称:Kullback-Leibler Divergence 用途:比较两个概率分布的接近程度 在统计应用中,我们经常需要用一个简单的,近似的概率分布 f∗f∗ 来描述 观察数据 DD 或者另一个复杂的概率分布 ff 。这个时候,我们需要一个量来衡量我们选择的近似分布 f∗f∗ 相比原分布 ff 究竟损失了多少信息量,这就是KL
在概率论或信息论中,KL( Kullback–Leibler divergence),又称相对熵(r
原创 2022-12-01 19:00:48
560阅读
  • 1
  • 2
  • 3
  • 4
  • 5