KL散度的公式是假设真实分布为,我们想用分布去近似,我们很容易想到用最小化KL散度来求,但由于KL散度是不对称的,所以并不是真正意义上的距离,那么我们是应该用还是用?下面就来分析这两种情况:正向KL散度: 被称为正向KL散度,其形式为: 仔细观察(1)式,是已知的真实分布,要求使上式最小的。考虑当时,这时取任何值都可以,因为这一项对整体的KL散度没有影响。当时,这一项对整体的KL散度就会产生影响,
转载
2023-09-15 16:14:39
474阅读
写在前面大家最近应该一直都有刷到ChatGPT的相关文章。小喵之前也有做过相关分享,后续也会出文章来介绍ChatGPT背后的算法——RLHF。考虑到RLHF算法的第三步~通过强化学习微调语言模型的目标损失函数中有一项是KL散度,所以今天就先给大家分享一篇与KL散度相关的文章。0. KL散度概述KL散度(Kullback-Leibler Divergence,KL Divergence)是一种量化两
转载
2023-11-07 15:02:19
351阅读
K-L散度
Kullback-Leibler Divergence,即K-L散度,是一种量化两种概率分布P和Q之间差异的方式,又叫相对熵。在概率学和统计学上,我们经常会使用一种更简单的、近似的分布来替代观察数据或太复杂的分布。K-L散度能帮助我们度量使用一个分布来近似另一个分布时所损失的信息。 K-L散度定义见文末附录1。另外在附录5中解释了为什么在深度学习中,训练模型时使用的是Cros
转载
2023-07-29 13:30:32
257阅读
两者都可以用来衡量两个概率分布之间的差异性。JS散度是KL散度的一种变体形式。KL散度:也称相对熵、KL距离。对于两个概率分布P和Q之间的差异性(也可以简单理解成相似性),二者越相似,KL散度越小。KL散度的性质:●非负性。即KL散度大于等于零。●非对称性。即运算时交换P和Q的位置,得到的结果也不一样。(所以这里严格来讲也不能把KL散度称为KL距离,距离一定符合对称性,所以要描述准确的话还是建议用
KL散度、交叉熵与JS散度数学公式以及代码例子1.1 KL 散度概述 KL 散度 ,Kullback-Leibler divergence,(也称相对熵,relative entropy)是概率论和信息论中十分重要的一个概念,是两个概率分布(probability distribution)间差异的非对称性度量。对离散概率分布的 KL 散度 计算公式为:对连续概率分布的 KL 散度 计算公
转载
2024-01-31 02:20:32
637阅读
KL散度(Kullback-Leibler divergence)是一种用来衡量两个概率分布之间的差异性的度量方法。它的本质是衡量在用一个分布来近似另一个分布时,引入的信息损失或者说误差。KL散度的概念来源于概率论和信息论中。KL散度又被称为:相对熵、互熵、鉴别信息、Kullback熵、Kullback
转载
2023-10-28 16:32:48
310阅读
# 如何实现Python KL散度
## 简介
在开始介绍如何实现Python KL散度之前,我们先来了解一下什么是KL散度。KL散度(Kullback-Leibler divergence),也称为相对熵,是用来衡量两个概率分布之间的差异性的一种方法。在机器学习和信息论中,KL散度经常被用来作为两个概率分布P和Q之间的差异性度量。
在本篇文章中,我们将教会刚入行的小白如何实现Python K
原创
2023-10-13 09:39:33
139阅读
from KL散度( KL divergence)全称:Kullback-Leibler Divergence 用途:比较两个概率分布的接近程度 在统计应用中,我们经常需要用一个简单的,近似的概率分布 f∗f∗ 来描述 观察数据 DD 或者另一个复杂的概率分布 ff 。这个时候,我们需要一个量来衡量我们选择的近似分布 f∗f∗ 相比原分布 ff 究竟损失了多少信息量,这就是KL散度
转载
2023-11-01 20:15:14
112阅读
转载
2019-01-16 10:13:00
479阅读
2评论
全称:Kullback-Leibler Divergence
用途:比较两个概率分布的接近程度
在统计应用中,我们经常需要用一个简单的,近似的概率分布 f∗ 来描述
观察数据 D 或者另一个复杂的概率分布 f 。这个时候,我们需要一个量来衡量我们选择的近似分布 f∗ 相比原分布 f 究竟损失了多少信息量,这就是KL散度起作用的地方。熵(entropy)想要考察 信息量 的损失,就要先
转载
2023-10-06 22:14:05
258阅读
KL散度(Kullback-Leibler divergence)概念:KL散度( Kullback-Leibler divergence)也被称为相对熵,是一种非对称度量方法,常用于度量两个概率分布之间的距离。KL散度也可以衡量两个随机分布之间的距离,两个随机分布的相似度越高的,它们的KL散度越小,当两个随机分布的差别增大时,它们的KL散度也会增大,因此KL散度可以用于比较文本标签或图像的相似性
转载
2023-10-15 10:33:06
154阅读
在概率论或信息论中,KL散度( Kullback–Leibler divergence),又称相对熵(r
原创
2022-12-01 19:00:48
560阅读
Python中的散列表Python内置的字典数据类型的实现就是散列表。散列表也被称为字典或者是关联数组(associative array)。和“关联数组”这个名称的字面意思一样,散列表会像Python的字典一样,把键和值关联起来。标准的数组数据结构能够让我们根据数组里的位置来查找值,而关联数组能够让我们根据键来查找值。散列表的目标实现散列表的目标是能够提供高效的插入、删除以及搜索的方法;而且,我
转载
2023-12-07 09:45:20
33阅读
对于连续数据,往往需要采用一种度量来描述这个数据的弥散程度。
给定属性x,它具有m个值\(\{x_1,x_2,...,x_m\}\)关于散布度量就有以下这些散布度量名称——————散布度量定义—————————————————————————极差range\(range(x)=max(x)-min(x)\)方差variance\(variance(x)=s^2_x=\frac{1}{m-1} \s
转载
2023-12-11 12:00:17
62阅读
前言本文仅仅介绍了常见的一些JS加密,并记录了JS和Python的实现方式常见的加密算法基本分为这几类:(1)base64编码伪加密(2)线性散列算法(签名算法)MD5(3)安全哈希算法 SHAI(4)散列消息鉴别码 HMAC(5)对称性加密算法 AES,DES(6)非对称性加密算法 RSA提示:以下是本篇文章正文内容,下面案例可供参考一、编码,加密1. 什么是编码?编码是信息从一种形式或格式转换
转载
2024-01-16 21:22:45
54阅读
KL散度(Kullback-Leibler divergence),也称为相对熵,是用于测量两个概率分布 ( P ) 和 ( Q ) 差异的度量。假设 ( P ) 和 ( Q ) 是离散概率分布,KL散度定义为:其中 ( X ) 是所有可能事件的集合,( P(x) ) 和 ( Q(x) ) 分别是事件 ( x ) 在两个分布中的概率。对于连续概率分布,KL散度的公式变为:这里 ( p(x) ) 和
转载
2024-07-02 22:45:19
127阅读
# Python 求 Kullback-Leibler 散度及其应用
在统计学和信息论中,Kullback-Leibler 散度(简称 KL 散度)是一个重要的概念。它用于度量两个概率分布之间的差异,尤其是在机器学习和深度学习中具有重要的应用。本文将通过一个实用示例,介绍如何用 Python 来计算 KL 散度,并且用图表表示旅行过程。
## 什么是 KL 散度?
KL 散度是用来衡量两个概
在机器学习和统计学中,Kullback-Leibler散度(KL散度)是一种非常重要的测度方法,它用于衡量两个概率分布之间的差异。在Python中实现KL散度计算,能够帮助我们分析模型的表现和对数据分布的理解。接下来,我将深入探讨如何实现一个Python KL散度函数,从背景定位到扩展应用进行详细记录。
## 背景定位
在数据科学和机器学习的实际应用中,我们常常需要比较模型预测的分布和真实的分
# Python计算KL散度
## 什么是KL散度?
KL(Kullback-Leibler)散度,也称为相对熵,是一种用来衡量两个概率分布之间差异的指标。KL散度是非负的,并且当且仅当两个概率分布完全相同时,KL散度为0。KL散度越大,表示两个分布之间差异越大。
KL散度的计算方式如下:
KL(P || Q) = Σ P(x) * log(P(x) / Q(x))
其中,P和Q表示两个
原创
2023-07-23 09:48:43
1267阅读
# KL散度(Kullback-Leibler Divergence)及其Python求解
在信息论中,KL散度是用来量化两个概率分布之间差异的一种指标。KL散度是非对称的,常用于评估真实数据分布与假设模型分布之间的差异。它不仅在机器学习和统计学中得到广泛应用,也是数据压缩和信息论中的重要概念。
## KL散度的定义
KL散度的数学定义如下:
\[ D_{KL}(P || Q) = \sum