说明:每个样本都会装入Data样本对象,决策树生成算法接收的是一个Array<Data>样本列表,所以构建测试数据时也要符合格式,最后生成的决策树是树的根节点,通过里面提供的showTree()方法可查看整个树结构,下面奉上源码。 Data.java package ai.tree.data;
import java.util.HashMap;
/**
* 样本类
转载
2023-11-11 15:49:56
148阅读
```markdown
在这篇博文中,我们将探讨如何使用Java实现决策树的完整代码,并系统地展示相关的环境预检、部署架构、安装过程、依赖管理、服务验证和迁移指南。随时可以跟随具体的图表和代码示例,一步一步实现功能。
## 环境预检
为了成功运行Java决策树,我们需要确认以下系统要求:
| 系统要求 | 详细信息 |
| ------------- |
决策树决策树在周志华的西瓜书里面已经介绍的很详细了(西瓜书P73-P79),那也是我看过讲的最清楚的决策树讲解了,我这里就不献丑了,这篇文章主要是分享决策树的代码。在西瓜书中介绍了三种决策树,分别为ID3,C4.5和CART三种决策树,三种树出了分裂的计算方法不一样之外,其余的都一样,大家可以多看看书,如果有什么不清楚的可以看看我的代码,决策树的代码算是很简单的了,我有朋友面试的时候就被要求写决策
转载
2023-08-09 14:44:43
267阅读
python3.x版本下,在用example_dict.keys()或者example_dict.values()取出字典中对应的键值时,取出的值总是会带有前缀。python2.x版本的不存在这个问题,可以直接使用书中的代码以下是python3.x版本代码:def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you wha
转载
2023-07-31 17:48:32
110阅读
决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配的问题。使用数据类型:数值型和标称型。简单介绍完毕,让我们来通过一个例子让决策树“原形毕
转载
2023-05-24 16:07:28
358阅读
上一篇对决策树算法的思想作了描述,也详细写了如何构造一棵决策树。现在希望用python代码来实现它。此处先调用机器学习中的算法库来实现。
转载
2023-05-22 23:40:13
752阅读
注:大部分参考《机器学习实战》,有空再来加上注释 决策树任务总结:有n条训练数据,每一条数据格式为[属性1,属性2,…,属性k,结果i],即数据为n*(k+1)的矩阵。 根据这n条数据生成一颗决策树,当来一条新数据时,能够根据k个属性,代入决策树预测出结果。 决策树是树状,叶子节点是结果,非叶子节点是决策节点,每一个决策节点是对某个属性的判断。 而选择哪一个属性作为当前划分属性,则是比较每
转载
2023-06-21 09:41:41
260阅读
这篇文章是《机器学习实战》(Machine Learning in Action)第三章 决策树算法的Python实现代码。1 参考链接机器学习实战2 实现代码2.1 treePlotter.pyimport matplotlib.pyplot as plt
desicionNode = dict(boxstyle='sawtooth', fc='0.8')
leafNode = dict(bo
转载
2023-06-14 13:57:19
302阅读
一天,小迪与小西想养一只宠物。小西:小迪小迪,好想养一只宠物呀,但是不知道养那种宠物比较合适。小迪:好呀,养只宠物会给我们的生活带来很多乐趣呢。不过养什么宠物可要考虑好,这可不能马虎。我们需要考虑一些比较重要的问题。小西:我也考虑了好多呀,可是还是很难去选择。我想养可爱的小兔兔,可是兔兔吃得很挑剔,又想养狗狗,可是狗狗每天都需要遛它,怕自己没有时间呀。小迪:其实我们可以绘制一个决策树,决策树是机器
转载
2023-09-04 09:57:49
48阅读
1. 简介决策数(Decision Tree)在机器学习中是比较常见的一种算法,属于监督学习中的一种。 算法流程如图: 具体算法可以详见下方参考 有空再做详解 2.代码实现"""
Created on Thu Nov 28 14:01:04 2019
@author: alpha
"""
import numpy as np
from math import log
import op
转载
2023-10-10 22:18:37
121阅读
本文用Python实现了分类决策树,主要实现了ID3、C4.5算法及剪枝。决策树主文件 tree.py# coding: utf-8
from math import log
import json
from plot import createPlot
class DecisionTree():
def __init__(self,criterion = "entrop
转载
2024-04-09 08:34:39
41阅读
文章目录1 决策树模型简介2 Gini系数(CART决策树)3 信息熵、信息增益4 决策树模型代码实现4.1 分类决策树模型(DecisionTreeClassifier)4.2 回归决策树模型(DecisionTreeRegressor)加入方式5 案例:员工离职预测模型5.1 模型搭建5.1.1 数据读取与预处理5.1.2 提取特征变量和目标变量5.1.3 划分训练集与测试集5.1.4 模型
转载
2023-08-30 23:30:58
1281阅读
在这张图中,树的每个节点代表一个问题或者一个包含答案的终结点(叶结点)。树的边将问题的答案与将问的下一个问题连接起来。用机器学习的语言来说就是,为了区分四类动物,我们利用三个特征来构建一个模型。
转载
2023-08-01 11:48:43
121阅读
python构建决策树代码 python决策树案例
转载
2023-05-29 23:24:06
0阅读
1.决策树-分类树sklearn.tree.DecisionTreeClassifier官方地址:https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier在机器学习中,决策树是最常用也是最强大的监督学习算
转载
2023-08-08 11:21:12
163阅读
文章目录第四步:递归创建字典树第四步的子步: 优化第五步 做画出树图像的准备工作5.1定义结点并定义结点和箭头绘制函数5.2在结点之间填充属性的特征的文本5.3获取该字典树的深度和叶子结点个数 第四步:递归创建字典树构建决策字典树用到的最基本的思想是递归 在构建过程中:我们需要用到第一步和第三步的函数,通过第三步得到的最好的划分方式不断的作为当前树的根标签,并将第一步划分的子数据集作为下层使用,
转载
2024-02-14 23:05:56
39阅读
目录1 决策树模型简介2 Gini系数(CART决策树)3 信息熵、信息增益4 决策树模型代码实现4.1 分类决策树模型(DecisionTreeClassifier)4.2 回归决策树模型(DecisionTreeRegressor)5 案例:员工离职预测模型5.1 模型搭建5.1.1 数据读取与预处理5.1.2 提
# Python 决策树代码实现
## 1. 简介
决策树是一种常用的机器学习算法,它可以根据已有数据集的特征进行分类或预测。在 Python 中,我们可以使用 scikit-learn 库来实现决策树算法。
在本文中,我将向你介绍如何使用 Python 实现决策树。我将按照以下步骤进行讲解:
1. 导入数据
2. 数据预处理
3. 构建决策树模型
4. 模型训练与预测
5. 模型评估
#
原创
2023-10-06 11:28:45
68阅读
数据读入数据说明obey:违约情况,1-违约;0-履约gender:性别,1-男,0-女
AGE:年龄;
edu_class: 教育阶层,0-3 分别表示初中,高中,大专,大学
nrProm:n recent promotion / month 最近一个月的电话营销次数
prom:最近一周是否有打电话
telephone_service: 客户是否有过电话投诉数据探索对各分类变量进行数量上的统计将
目录 什么是决策树(Decision Tree)
特征选择
使用ID3算法生成决策树
使用C4.5算法生成决策树
使用CART算法生成决策树
预剪枝和后剪枝
应用:遇到连续与缺失值怎么办?
多变量决策树
Python代码(sklearn库)
什么是决策树(Decision Tree) 引例 现有训练集如下,请训练一个决策树模型,对未来的西瓜的优劣做预测