写在前面这是HIT2019人工智能实验三,由于时间紧张,代码没有进行任何优化,实验算法仅供参考。实验要求实现贝叶斯网络的概率推导(Probabilistic Inference)具体实验指导书见github知识部分关于贝叶斯网络的学习,我参考的是这篇博客这篇博客讲述的虽然全面,但细节部分,尤其是贝叶斯网络概率推导的具体实现部分,一笔带过。然而本次实验的要求就是实现贝叶斯网络的概率推导,因此我在学习
转载
2024-09-10 22:06:58
25阅读
python基础
1.列表常用方法
append:用于在列表末尾追加新的对象
extend:可以在列表末尾一次性追加另一个序列的多个值
count:用来统计某个元素在序列中出现的次数
index:用来查找某个值第一个匹配项的索引的位置
insert:用于将对象插入到列表中
pop:删除列表的一个元素,默认是最后一个,并且返回元素的值
remove:用于移除列表中某个值的第一个匹配项
# 实现Python按照概率执行
## 1. 整体流程
为了实现Python按照概率执行,我们可以使用random模块中的random()函数生成一个随机数,然后根据这个随机数来确定执行哪个操作。具体流程如下:
| 步骤 | 描述 |
| ------ | ------ |
| 1 | 导入random模块 |
| 2 | 生成随机数 |
| 3 | 根据概率执行不同的操作 |
## 2.
原创
2024-06-02 03:20:43
60阅读
概率和统计知识是数据科学和机器学习的核心;我们需要统计和概率知识来有效地收集、审查、分析数据。现实世界中有几个现象实例被认为是统计性质的(即天气数据、销售数据、财务数据等)。这意味着在某些情况下,我们已经能够开发出方法来帮助我们通过可以描述数据特征的数学函数来模拟自然。“概率分布是一个数学函数,它给出了实验中不同可能结果的发生概率。”了解数据的分布有助于更好地模拟我们周围的世界。它可以帮助我们确定
转载
2023-11-16 13:54:42
110阅读
# Python以不同概率执行不同分支
## 引言
作为一名经验丰富的开发者,我们经常需要根据不同的条件执行不同的代码分支。有时候,我们希望某个分支被执行的概率较高,而另一个分支被执行的概率较低。在Python中,我们可以使用一些技巧来实现这一点。在本文中,我将向你介绍如何使用Python以不同概率执行不同分支的方法。
## 整体流程
下面是整个实现的步骤,我们可以使用一个表格来展示:
|
原创
2023-12-30 06:47:42
39阅读
## Python 根据概率随机判断是否执行操作
在编程中,我们经常需要根据一定的概率来决定是否执行某个操作。Python 提供了许多方法来实现这个功能,本文将介绍几种常见的方法,并给出相应的代码示例。
### 方法一:使用`random`模块
Python 的 `random` 模块提供了生成随机数的方法,我们可以使用其中的 `random()` 函数来生成一个 `[0, 1)` 之间的随
原创
2023-07-21 00:39:43
399阅读
python统计分布和概率 When studying statistics, you will inevitably have to learn about probability. It is easy lose yourself in the formulas and theory behind probability, but it has essential uses in both
转载
2023-09-12 11:33:27
211阅读
1. 古典概型中条件概率的计算条件概率是将样本空间限制在上,的概率。因此,我们可以利用《概率统计Python计算:解古典概型问题》定义的函数P(A, S),计算古典概型中的条件概率。这只需对两个参数A和S分别传递和即可。例1 一盒子装有4只产品,其中有3只一等品,1只二等品。从中无放回地抽取产品两次,每次任取一只。设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”。求条件概率。解:
转载
2023-08-28 14:09:43
200阅读
概率分布抽样-离散random.randint(a,b) # 离散均匀分布 random.randrange([start,]stop[,step]) # 离散均匀分布 离散指数分布-缺失! 伯努利分布-缺失! 二项分布-缺失! 几何分布-缺失! 泊松分布-缺失!概率分布抽样-伪连续random.uniform(a,b) # 均匀分布 random.random() a=0、b=1的均匀分布 ra
转载
2023-07-12 21:48:15
95阅读
在本文中,将给大家介绍常见的8种概率分布并通过Python 代码进行可视化以直观地显示它们。概率和统计知识是数据科学和机器学习的核心;我们需要统计和概率知识来有效地收集、审查、分析数据。现实世界中有几个现象实例被认为是统计性质的(即天气数据、销售数据、财务数据等)。这意味着在某些情况下,我们已经能够开发出方法来帮助我们通过可以描述数据特征的数学函数来模拟自然。“概率分布是一个数学函数,它给出了实验
转载
2023-08-06 12:02:53
173阅读
random模块实现了这种分布的伪随机数生成器,随机数可以被应用于数学、安全等领域,并且也经常被嵌入算法中,用以提高算法效率,在机器学习算法中对随机数的设定是必要的一步,并且随机数的设定会影响算法的好坏。random模块提供的函数是基于random.Random类的隐藏实例的绑定方法,几乎所有模块函数都依赖于基本函数random(),random()函数在半开放区间[0.0, 1.0)内均匀生成随
转载
2023-08-06 21:17:40
263阅读
实验一抛硬币试验的模拟利用python产生一系列0和1的随机数,模拟抛硬币试验。验证抛一枚质地均匀的硬币,正面向上的频率的稳定值为0.5。 实验步骤 (1)生成0和1的随机数序列,将其放入列表count中;也可用函数表示。 (2)统计0和1出现的次数,将其放入a中。a[0],a[1]分别表示0和1出现的次数。 (3)画图展示每次实验正面向上出现的频率import matplotlib.pyplot
转载
2023-08-14 15:49:10
161阅读
离散型概率分布二项分布二项试验满足以下条件的试验成为二项试验:试验由一系列相同的n个试验组成;每次试验有两种可能的结果,成功或者失败;每次试验成功的概率是相同的,用p来表示;试验是相互独立的。设x为n次试验中的成功的次数,由于随机变量的个数是有限的,所以x是一个离散型随机变量。x的概率分布成为二项分布。Python实现>>> import numpy as np
>>
转载
2023-08-08 13:42:12
291阅读
上一期文章:「12」你们啊,naive!——朴素贝叶斯谈笑录 中,我们剖析了朴素贝叶斯算法的本质和特点以及贝叶斯学派的一些知识。这里我们用python代码进行Naive Bayes算的的实现。第1部分是计算打喷嚏的建筑工人患上新冠肺炎的概率,第2部分是上一期文章中提到的西瓜分类实战项目。实战项目一、计算打喷嚏的建筑工人患病的概率有多大?class NBClassify(object):
转载
2024-02-02 16:03:27
12阅读
算法很简单,x是我们最终要输出的数字,只要它不在[0, 3)范围内,就不断地调用Rand5来更新它。直观地看,算法输出的数字只有0、1、2这三个,而且对任何一个都没有偏袒,那么显然每个数字的概率都是1/3,那让我们来严格地计算一下。以输出0为例,看看概率是多少。x的第一个有效数值是通过Rand5得到的。Rand5返回0的概率是1/5,如果这事儿发生了,我们就得到了0, 否则只有当Rand5返回3或
转载
2023-08-10 19:50:51
177阅读
一、概率列表+样本列表 任务描述:我们常常拥有一个概率列表和样本列表,表示每一个样本被选中的概率,并且在概率列表中,概率之和为1。比如,[0.7, 0.2, 0.1]和['钢铁侠', '美国队长', '雷神'],两个列表中的元素一一对应;并且,这两个列表共同表示:'钢铁侠'有0.7的概率被选中,'美国队长'有0.2的概率被选中,'雷神'有0.1
转载
2024-01-17 06:03:25
133阅读
# 如何实现真实概率与预测概率的比较
在数据科学和机器学习中,比较真实概率与预测概率的任务是理解模型的准确性以及性能的重要一步。本文将逐步引导你完成这个任务,包括必要的步骤和代码示例。我们将使用Python来实现这个流程。
## 流程概述
我们将按照以下步骤进行比较:
| 步骤 | 描述 |
| -------
文章目录3.1.2 随机变量及其分布3.1.3 随机变量的数字特征 import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')3.1.2 随机变量及其分布# 随机种子 → 种子
转载
2024-04-12 14:17:04
238阅读
使用Python实现马尔科夫随机场、蒙特卡洛采样等随机过程算法的前提,就是用Python实现概率的计算。并不只是数值计算,而是能够将随机模拟中常用的各种概率相关的操作,都能用计算机的数据结构来表达,其关键在于对【随机变量】的适当定义处理。因此本文介绍一下概率分布在Python中定义的一种数据结构。一个概率分布的组成要素包含:随机变量、变量的维度、变量不同取值状态的对应概率值。在一个有向图中(贝叶斯
转载
2023-08-22 18:26:04
64阅读
目录0. 前言1. 随机变量1.1 随机事件1.2 概率1.2 随机变量1.3 离散随机变量1.4 连续随机变量1.5 随机变量的概率分布2. 概率函数2.1 概率质量函数¶2.2 概率密度函数2.3 累积分布函数2.4 百分点函数(PPF)2.5 Survival Function2.6 Inverse Survival Function2.7 风险函数Hazard Function2.8 累积
转载
2024-02-09 22:06:21
50阅读