多因子选股模型模型搭建中,往往会涉及到非常多的股价影响因子,并可能导出数量极多的备选模型。因此,对于多因子选股模型的评价和筛选,就显得尤为关键。对于专业的量化投资人而言,就需要进一步了解多因子选股模型的两种主要的评价判断方法——打分法和回归法。 1、打分法的评价原理和流程所谓打分法,就是根据各个因子的大小对股票进行打分,然后按照一定
使用qteasy自定义并回测一个多因子选股策略使用qteasy自定义并回测一个多因子选股策略策略思想定义策略运行策略 使用qteasy自定义并回测一个多因子选股策略我们今天使用qteasy来回测一个多因子选股交易策略,qteasy是一个功能全面且易用的量化交易策略框架,Github地址在这里。使用它,能轻松地获取历史数据,创建交易策略并完成回测和优化,还能实盘运行。项目文档在这里。为了继续本章的
作者:chen_h 介绍我们在前面的章节中,我们了解到资本资产定价模型(CAPM)将市场回报视为影响任何资产回报的唯一因素。本章将 CAPM 概括为以下形式的多因素模型:其中每个 Fama-French 三因子模型这个模型是由 Eugene Fama 和 Kenneth French 于 1993 年提出来描述股票收益的。具体三因子模型数学表述如下:其中,MKT 是市场的超额回报。这是在美国注册并
大家好,今天讲一下数据分析中的因子分析。因子分析是主成分分析的推广和发展,是将具有错综复杂关系的变量综合为少数几个因子,以再现原始变量与因子之间的相互关系;根据不同的因子还可以对变量进行分类,也属于多元分析中降维处理的一种统计方法。例如,一个学生的英语、数学、语文成绩都很好,那么潜在的共性因子可能是智力水平高。因此,因子分析的过程其实就是寻找共性因子和个性因子并得到最优解释的过程。一、参数估计1.
写在前面 本科就有接触过使用SAS实现Fama French三因子模型,那时对于各种构造方法不慎了解,基本是老师说一步,自己做一步。学习Python也挺久的了,也做过一些其他数据科学的项目,但是与学术相关甚少;半年前,看到了大佬的文章(多因子模型的回归检验),就想通过自己收集数据,用Python代码实现一次多因子定价模型,由于各种原因拖到了暑假。这篇文章就当是交作业,一来是进一步熟
机器学习多因子策略标签(空格分隔): 量化交易 机器学习前言在二级市场的量化策略中,多因子策略称得上是最早被创造但是同时也是变化最多的投资策略之一,好的因子意味着长期稳定的收入,多因子策略可以通过不同的渠道来实现,从而带来不同的市场表现传统使用的多元线性回归模型能够获得多因子与股价之间的一定的对应关系,但是在有的时候不够稳定机器学习在预测和分类中具有良好的表现,传统的多因子线性回归模型也证明了多个
转载 2023-10-02 21:12:44
21阅读
浅谈多因子进化算法(Multifactorial Evolutionary Algorithm)前言 多因子进化算法是多任务进化算法的一种范式,旨在利用单个种群来同时解决多个优化任务,是南洋理工大学的Yew-Soon Ong教授于2016年提出来的[1],简称MFEA(或MFO,Multifactorial Optimization)。MFEA利用的是基于种群搜索的隐式并行性,尝试去发掘不同任务
Fama-French三因子选股策略,三因子分别为  市场因子(股指)、市值因子、账面市值比因子因子模型的具体步骤:1.对股票按照市值和账面市值比分组,共计六组,市值按大小市值各50%分,账面市值比按3:4:3=H:M:L分配(因为账面市值比的作用更强,所以分得更细一点)2.计算股票市场每天的SMB、HML,按日期循环生成3.找出个股的涨跌幅(如茅台)以及股指的涨跌幅4.按日期合并以上
转载 2023-10-23 22:59:01
4阅读
技术讨论,不构成任何投资建议!一、CAPM的不足与三因子模型的诞生CAPM模型经历了大量的实证和应用之后,有证据表明,市场风险溢酬并不能充分解释个别风险资产的收益率。于是很多研究者开始探索其他的因素,比如公司市值、PE、杠杆比例、账面市值比等。Fama和French两个人对于各种因素进行了全面的组合分析,当单独使用Beta或者用Beta分别与其他几个因子相结合时,Beta的解释能力很
大致思路:从06年开始提取股票数据,到11年结束,为历史数据期,然后从12年到13年10月为回测期间。开始每月调整权重。本文分为三部分1. 因子设计2. 数据整理思考了一下,还是放弃大矩阵的思想。在R里面要多利用神奇的Vector和data frame啊。做成单因子data frame。3. 回归分析因子的处理本来就很奇葩了,还要价格回归价格,略蛋疼。 =======神奇的分割线====
spss案例教程 原文地址:https://www.ixueshu.com/document/934cf7bb1ff99338318947a18e7f9386.html 主成分分析与因子分析及SPSS实现一、主成分分析 (1)问题提出 在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者
多因子模型梗概股票收益受到多重因素的影响,比如宏观、行业、流动性、公司基本面、交易情绪等等。多因子模型就是寻找那些和股票收益率最相关的影响因素,把这些因素组合起来刻画股票收益并据此进行选股。在市场无效或弱有效的假设下,多因子模型通过主动投资组合管理来获取超额收益。其核心思想在于市场影响因素是多重的并且是动态的,但是总会有一些因子在一定的时期内能发挥稳定的作用。在量化实践中,由于不同市场参与者或分析
转载 2023-08-13 12:45:02
19阅读
引言即使风格相似、收益表现相似的组合,其收益来源也可能不尽相同,通过业绩归因,能够更加清楚组合的收益究竟来源于什么,进而知道这种获取超额收益的能力是否能够持续,也能够明白组合发生剧烈波动的原因,从而改进策略。下面将介绍两种常用的业绩归因方法。1、Brinson收益分解Brinson 模型是最常用的绩效分解模型,由Brinson 和Fachler 在论文《Measuring Non−US Equit
因子分析在各行各业的应用非常广泛,尤其是科研论文中因子分析更是频频出现。小兵也凑个热闹,参考《SPSS统计分析》书中的案例,运用SPSS进行因子分析,作为我博客 SPSS案例分析系列  的第三篇文章。 【一、概念】 探讨具有相关关系的变量之间,是否存在不能直接观察到的,但对可观测变量的变化其支配作用的潜在因素的分析方法就是因子分析,也叫因素分析。通俗点:因子分析是寻
大家好,我是Peter~最近看了很多的关于因子分析的资料,整理出这篇理论+实战文章分享给大家。后续会出一篇PCA主成分分析的文章,将主成分分析和因子分析两种降维的方法进行对比。因子分析作为多元统计分析里的降维方法之一,因子分析可以应用于多个场景,如调研、数据建模等场景之中。起源因子分析的起源是这样的:1904年英国的一个心理学家发现学生的英语、法语和古典语成绩非常有相关性,他认为这三门课程背后有一
一、什么是多因子模型?寻找那些对股票收益率最相关的影响因素,使用这些因素(因子或指标)来刻画股票收益并进行选股。核心思想在于,市场影响因素是多重的并且是动态的,但是总会有一些因子在一定的时期内能发挥稳定的作用。二、理论背景证券组合超额收益=alpha + beta*市场组合超额收益马科维茨论文:开创性地引入了均值和方差来定量刻画股票投资的收益和风险(被认为是量化交易策略的鼻祖),建立了确定最佳资产
结构化风险因子模型利用一组共同因子和一个仅与该股票有关的特质因子解释股票的收益率,并利用共同因子和特质因子的波动来解释股票收益率的波动。结构化多因子风险模型的优势在于,通过识别重要的因子,可以降低问题的规模,只要因子个数不变,即使股票组合的数量发生变化,处理问题的复杂度也不会发生变化。结构化多因子风险模型首先对收益率进行简单的线性分解,分解方程中包含四个组成部分:股票收益率、因子暴露、因子收益率和
# 多因子模型Python中的应用 多因子模型是一种常用的金融分析工具,旨在通过多个风险因素来解释证券的收益。在金融市场中,尤其在资产定价和投资组合管理中,多因子模型具有重要的实际应用价值。本文将介绍多因子模型的基本概念及其在Python中的实现,并提供相应的代码示例。 ## 多因子模型的基本概念 多因子模型假设,投资回报不仅仅受市场变化的影响,还受其他经济、财务或统计因素的影响。常见的因
原创 2024-10-07 03:13:42
87阅读
Fama-Macbeth回归及因子统计引言本文介绍的因子统计方法基于1973年Fama和Macbeth为验证CAPM模型而提出的Fama-Macbeth回归,该模型现如今被广泛用被广泛用于计量经济学的panel data分析,而在金融领域在用于多因子模型的回归检验,用于估计各类模型中的因子暴露和因子收益(风险溢价)。Fama-Macbeth与传统的截面回归类似,本质上也与是一个两阶段回归,不同的是
在量化交易中,多因子策略是一种常被提及且应用广泛的选股策略。我们会经常使用某种指标或者多种指标来对股票池进行筛选,这些用于选股的指标一般被称为因子。顾名思义,多因子模型是指使用多个因子,综合考量各因素而建立的选股模型,其假设股票收益率能被一组共同因子和个股特异因素所解释。多因子模型的优点在于,它能通过有限共同因子来有效地筛选数量庞大的个股,在大幅度降低问题难度的同时,也通过合理预测做出了判断。本篇
转载 2024-02-05 16:28:33
28阅读
  • 1
  • 2
  • 3
  • 4
  • 5