大数据无处不在。在这个时代,不管你喜欢与否,你可能会遇到它的过程中运行一个成功的事业。大数据是什么?大数据就是看起来有很多的数据。
转载
2023-05-29 23:17:48
73阅读
数据驱动的时代,无论你的工作内容是什么,掌握一定的数据分析能力,可以帮助你更好地认识这个世界,更好地提升工作效率。一次完整的数据分析流程主要分为以下六个环节:明确分析目的、数据获取、数据处理、数据分析、数据可视化、结论与建议。 一、明确数据分析目的 任何一件事在做之前都是有目的性的,数据分析也是如此,在进行数据分析之前首先要明确为什么要做数据分析? 常
转载
2023-08-08 17:49:01
77阅读
一、前言 您好,欢迎来到 python数据分析 首先,我们先来简单的介绍一下这门课程,整理一下背景知识,好对这门学科有一个大概的认识,方便接下来的学习。 二、初识大数据 大数据是近几年来都一直很火的一个名词,似乎是伴随着"互联网"的逐渐发展所出现的一个新名词。那什么是大数据呢?简单来说,
转载
2023-08-30 18:05:48
45阅读
“
阅读本文大概需要 5 分钟。
”
大家好,我是大鹏,城市数据团联合发起人,致力于 Python 数据分析、数据可视化的应用与教学。和很多同学接触过程中,我发现自学 Python 数据分析的一个难点是资料繁多,过于复杂。大部分网上的资料总是从 Python 语法教起,夹杂着大量 Python 开发的知识点,花了很多时间却始终云里雾里,不知道哪些知识才是真正有用的。本来以
本章内容理解数据认识数据分析数据分析工具Python集成开发环境和文本编辑器使用Jupter Notebook理解数据需要分析的数据一般是结构化的、半结构化的、非结构化的数据集合。大部分数据集都能够被转化为更加适合分析和建模的结构化形式。主要的结构化数据表格型数据,其中各列可能是不同的类型(字符串、数值、日期等),比如报讯在关系型数据库中或以制表符/逗号为分隔符的文本文件中的那些数据。多维数组(矩
转载
2023-08-31 20:42:39
1358阅读
现如今,数据分析中有很多的工具都是十分实用的。由于大数据的发展越来越好,使得使用了大数据分析的企业已经朝着更好的方向发展。正是因为这个原因,数据分析行业的人才也开始变得火热起来,尤其是高端人才,越来越稀缺。当然,对于数据分析这个工作,的确是需要学会一些编程语言的,比如MATLAB,Python,Java等语言。但是对于初学者来说,Python是一个不错的语言,Python语言简单易懂,同时对于大
转载
2023-09-20 22:57:43
108阅读
大数据的4V特点: Volume(大量):数据巨大。 Velocity(高速):数据产生快,每一天每一秒全球人产生的数据足够庞大且数据处理也逐渐变快。 Variety(多样):数据格式多样化,如音频数据、文本数据等 Value(价值):通过收集大量数据不相关数据探查并证明其两者之间的关联性,所产生的价值,如买啤酒的人通常会购买尿布的案例。 数据分析流程
转载
2023-08-01 14:35:09
153阅读
对于 Pandas 运行速度的提升方法,之前已经介绍过很多回了,里面经常提及 Dask ,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。1、什么是Dask?Pandas 和 Numpy 大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合 RAM&n
转载
2024-02-29 19:25:38
54阅读
首先,是数据分析的模块,numpy 高效处理数据,提供数组支持,很多模块都依赖它,比如pandas,scipy,matplotlib都依赖他,所以这个模块都是基础。所以必须先安装numpy。然后,pandas 主要用于进行数据的采集与分析,scipy 主要进行数值计算。同时支持矩阵运算,并提供了很多高等数据处理功能,比如积分,微分方程求样等。matplotlib 作图模块,结合其他数据分析模块,解
转载
2023-06-28 14:23:32
145阅读
1、pandas数据结构之DataFrameDataFrame生成方式:1、从另一个DataFrame创建。2、从具有二维形状的NumPy数组或数组的复合结构生成。3、使用Series创建。4、从CSV之类文件生成。下面介绍DataFrame的简单用法: a):读取文件代码:from pandas.io.parsers import read_csv
df=read_csv("H
转载
2024-08-23 18:53:14
56阅读
作者:东哥起飞对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。1、什么是Dask?Pandas和Numpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。Dask是开源免费的。它是与其他社区项目(如Numpy,Pand
转载
2023-08-31 22:35:17
182阅读
如果您曾经想通过流数据或快速变化的数据在线学习Python,那么您可能会熟悉数据管道的概念。数据管道允许您通过一系列步骤将数据从一种表示形式转换为另一种表示形式。数据管道是数据工程的关键部分,我们将在新的“ 数据工程师之路”中进行讲授。在本教程中,我们将逐步使用Python和SQL建立数据管道。 数据管道的一个常见用例是找出有关您网站访问者的信息。如果您熟悉Google Analytics(
转载
2024-05-16 10:35:17
23阅读
这篇绝对是我分享过的最清楚、最全的一篇教程!能够解决大部分人的数据采集及分析需求!实用、简单,尤其适合excel大户、办公族、业务人员,或者不会编程、不懂数据分析理论的技术小白……图文、动图、视频都有,包你学的明白!01 点对点的采集:直接采集数据
所用工具:表单(协同收集+隐私保护)
简道云在线表单首先想好需要收集哪些数据,添加字段制作表单。表单创建方式有两种,一种是「创建空白表单」,根据
转载
2023-07-26 00:00:27
389阅读
数据分析流程数据分析的流程和思路主要分为五部分,分别是 提出问题、收集数据、数据处理和清洗、数据分析以及可视化。那我们先从提出问题和数据收集开始,一般想收集数据主要有四种来源:观测、统计、问卷、调研、数据库以及网络爬虫。三、数据清洗1数据预处理#导入数据分析包import pandas as pdimport numpy as np▲理解这份数据集▲结合代码来看数据.2调整数据类型3修改列名4选择
转载
2023-08-07 20:48:50
3阅读
数据分析的步骤 第一步:提出问题 第二步:收集数据 第三步:数据处理和清洗 第四步:数据分析 第五步:可视化,得出结论一、提出问题 一个数据分析的过程,其实是从数据中得到结论的过程。但分析的起点并非数据,而是问题! 先确定问题是什么,再投入精力从相关的数据中挖掘答案。二、收集数据 通常情况下,我们想要收集数据,会有4种数据的来源:1.观测和统计得到的数据2.问卷和调研得到的数据3.从数据库中获取的
转载
2023-09-11 17:04:06
64阅读
Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性。Python可用于数据分析,但其单纯依赖Python本身自带的库进行数据分析还是具有一定的局限性的,需要安装第三方扩展库来增强分析和挖掘能力。Python数据分析需要安装的第三方扩展库有:Numpy、Pandas、SciPy、Matplotlib、Scikit-Lear
转载
2023-07-29 23:39:21
134阅读
作者:东哥起飞首发于公众号:Python数据科学对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。1、什么是Dask?Pandas和Numpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。Dask是开源免费的。它是与其
转载
2023-08-31 21:28:47
112阅读
出差中…………,换pc了,没有开发环境,看看其他口味的课程 数据工作流抛出问题——数据——数据研究——问题结论——解决方案用py用py来分析数据,结合很多包,py类比手机,安装不同app就是安装不同的包知道2神器,火车头,Gephi。数据采集与分析火车头简单教程:A、网址识别 (*)强大的变量,和bs4一样,唯一定位即可原理:超链接 1、1级网址识别,(
转载
2024-04-30 14:26:38
24阅读
5.2 金融学图表5.2.1 mplfinancematplotlib的finance库包含不少可视化的金融图表,由于几代更新迭代,finance库也发生了变化。从2.2.0版本前调用:import matplotlib.finance as mpf到2.2.0版本后调用:pip install https://github.com/matplotlib/mpl_finance/archive/m
Pandas是Python大数据分析的必备库之一,调用库的代码如下:import pandas as pd在开始大数据分析之前,需要了解Pandas的基础知识:数据结构:数据在Pandas的处理过程中存在的形式,决定了数据特性和数据处理流程;主要的功能函数:包括索引、重新索引、数据的增删改、排序与排名等;常见运算函数:加减乘除、绝对值、统计分析值等等;附加功能:文件读取、数据库交互、网站API等(
转载
2023-08-09 16:28:44
314阅读