目录1、安装NVIDIA显卡驱动2、安装CUDA(1)确定显卡支持的CUDA版本(2)根据自己显卡支持的CUDA版本,下载对应的CUDA版本(3)安装CUDA(4)配置环境变量(安装好CUDA后,系统一般会自动添加环境变量)(5)检验CUDA安装是否成功3、安装cuDNN(1)cuDNN是pytorch搭建深度学习模型的依赖,没有它,不能运行卷积等操作。(2)下载对应版本的cuDNN(3)下载的时
目录一、前言二、安装CUDA、cuDNN和PyTorchCUDA的安装cuDNN的安装三、验证是否安装成功一、前言在进行深度学习模型训练时,可以使用CPU训练,但通常比较慢,也可以采用GPU进行加速训练,从而缩短训练时间。目前支持深度学习的显卡只有NIVDIA,AMD是不支持的,因此AMD显卡的用户不用再纠结于CUDA的安装了,直接安装CPU版本的PyTorch就好了。要使用GPU进行加速训练,要
本节主要讲述在模型训练时利用gpu对训练进行加速首先我们需要知道gpu不是我们想调用就可以直接调用的,我们需要安装一个cuda工具包以及其对应的cudnn(cuDNN 是用于配置深度学习使用),当我们安装好这两个时才能利用机器学习来进行训练,其次我们的gpu驱动要足够新,他会对版本更低的cuda工具包进行兼容,但更高的不行(不需要降级gpu驱动),最后便是最复杂的问题:版本对应,可以去官网,我使用
1、为什么要装CUDA,CUDNN:先来讲讲CPU和GPU的关系和差别吧。截图来自(CUDA的官方文档): 从上图可以看出GPU(图像处理器,Graphics Processing Unit)和CPU(中央处理器,Central Processing Unit)在设计上的主要差异在于GPU有更多的运算单元(如图中绿色的ALU),而Control和Cache单元不如CPU多,这是因为GPU在进行并行
转载 2024-04-16 17:23:18
236阅读
# 实现Python CUDA获取GPU ## 整体流程 首先,我们需要安装CUDA工具包和相应的Python库,然后通过Python代码获取GPU信息。下面是整个过程的步骤: | 步骤 | 操作 | | --- | --- | | 1 | 安装CUDA工具包和cuDNN | | 2 | 安装PyTorch或TensorFlow | | 3 | 编写Python代码获取GPU信息 | ##
原创 2024-04-16 04:08:21
70阅读
# 计算的未来:PythonGPU计算(CUDA) 随着数据科学和机器学习的迅速发展,传统的CPU计算在处理大量数据时显得力不从心。为了应对这一挑战,很多开发者转向使用GPU(图形处理单元)进行并行计算。本文将介绍如何使用Python通过CUDA进行GPU计算,并提供简单的代码示例来帮助理解。 ## 什么是CUDACUDA(Compute Unified Device Architec
原创 9月前
31阅读
概念 CUDA —— 由NVIDIA推出的通用并行计算架构             —— 该架构使GPU能够解决复杂的计算问题           —— 包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎&n
转载 2023-07-23 21:44:21
261阅读
       因为学习CUDA编程,需要搭建CUDA编程环境,需要用到TensorRT,所以连TensorRT一块安装了,安装之前最重要的一步就是确认自己的显卡是不是支持CUDA编程,支持cuda的显卡只有NVidia的显卡,NVidia的显卡有GTX Geforce, Quadra 和 Tesla三个大系列,根据自己的显卡型号去以下网站查询对应的CUDA
转载 2024-05-16 11:24:26
360阅读
1.CUDA对应的NVIDIA驱动版本对照表,参考一下表格2.显卡驱动安装,参考这里我这里选择安装的显卡驱动是NVIDIA-Linux-x86_64-410.78.run,安装是否成功,可以输入这个命令nvidia-smi,如果有显示GPU信息,那就是安装成功了。3.cuda安装装cuda首先需要降级:sudo add-apt-repository ppa:ubuntu-toolchain-r/t
转载 2024-07-22 12:41:25
2205阅读
GPU 的硬件基本概念Nvidia的版本:  实际上在 nVidia 的 GPU 里,最基本的处理单元是所谓的 SP(Streaming Processor),而一颗 nVidia 的 GPU 里,会有非常多的 SP 可以同时做计算;而数个 SP 会在附加一些其他单元,一起组成一个 SM(Streaming Multiprocessor)。几个 SM 则会在组成所谓的 TPC(Texture Pr
转载 2024-07-03 21:41:57
76阅读
GPU架构SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的。以Fermi架构为例,其包含以下主要组成部分:CUDA coresShared Memory/L1CacheRegister FileLoad/Store UnitsSpecial Function UnitsWarp SchedulerGPU中每个SM都设计成支持
转载 2024-07-19 15:17:14
169阅读
一、典型GPU程序构成一个典型GPU程序有如下几个部分:①CPU在GPU上分配内存②CPU将CPU中的数据copy到GPU中③调用内核函数来处理数据④CPU将GPU中的数据copy到CPU中 *可以看出,四个步骤中有两个是数据的copy,因此如果你的程序需要不断地进行copy,那么运行效率会比较低,不适合利用GPU运算。一般情况下,最好的方式是,让GPU进行大量运算,同时保证计算量与通信
转载 2023-09-08 18:30:55
181阅读
# CUDA 检测 GPU 数量的 Python 实现指南 在现代计算中,GPU(图形处理单元)已成为高性能计算的关键组件,特别是在深度学习、科学计算和数据分析等领域。对于希望利用 CUDA 加速计算的开发者来说,首先确定系统中的 GPU 数量是非常重要的一步。本文将指导您如何在 Python 中实现 CUDA 检测 GPU 数量,并提供详细的步骤和示例代码。 ## 1. 流程概述 在开始之
原创 9月前
233阅读
今天是Numpy专题的第5篇文章,我们来继续学习Numpy当中一些常用的数学和统计函数。 基本统计方法 在日常的工作当中,我们经常需要通过一系列值来了解特征的分布情况。比较常用的有均值、方差、标准差、百分位数等等。前面几个都比较好理解,简单介绍一下这个百分位数,它是指将元素从小到大排列之后,排在第x%位上的值。我们一般常用的是25%,50%和75%这三个值,通过这几个值,我们很容易对于整个特征的分
零教程的基本概述在深度学习蓬勃发展的今天,模型变得越来越深,参数愈加庞大,虽然准确率不断增长,由于硬件受限,对实际场景部署的要求也越来越高,CUDA 编程成为了一门必备的武林绝学。如果你对模型的推理速度有较高要求,如果你有庞大的数据流等待推理,一起跟着教程了解这门技术。该教程目前暂定有以下章节,如有添加将会另行说明:  通过这些教程,可以说初入了 CUDA 编程的世界,基本学会
cuda,cudnn,安装和tensorflow的gpu调配忙了两周终于安装完了cuda 和 cudnn ,并且成功调用tensorflow的GPU使用!!!1;首先 找自己电脑的适配cuda2;cuda,cudnn,tensorflow版本适配表3;决定适合自己的版本后,开始下载!4;cuda安装:5;安装cudnn6;添加环境变量7;检测环境变量是否添加成功8;在tensorflow中配置G
转载 2024-03-16 08:45:54
184阅读
多首先,先来了解一下GPU与CPU的区别,如图 可以看到CPU(Central Processing Unit,中央处理单元),由Control(控制台),ALU(Arithmetic Logic Unit,逻辑计算单元),Cache(高速缓存),而GPU(Graphic Processing Unit,图形处理单元)也是由相同的部件组成,但GPU的计算单元远比CPU多,这就决定了GPU适合大量
CUDA的全称是Computer Unified Device Architecture(计算机统一设备架构)。CUDA不只是一种编程语言,它包括NVIDIA对于GPGPU的完整的解决方案:从支持通用计算并行架构的GPU,到实现计算所需要的硬件驱动程序、编程接口、程序库、编译器、调试器等。NVIDIA提供了一种较为简便的方式编写GPGPU代码:CUDA C。我们将一个cuda程序分为两部分:主机端
 Win10+RTX3060机器学习环境配置1、下载准备  2、下载安装CUDA和CUDNN      2.1 cuda和cudnn下载      2.2 cuda和cudnn安装  3、安装GPU版pytorch与TensorFlow      3.1 下载   &n
转载 2024-05-14 10:51:47
1770阅读
目录Python矩阵基本运算Python矩阵操作Python矩阵乘法Python矩阵转置Python求方阵的迹Python方针的行列式计算方法Python求逆矩阵/伴随矩阵Python解多元一次方程微分、梯度的含义微分梯度梯度下降法梯度下降法求解回归方程的python代码参考引用 Python矩阵基本运算Python矩阵操作 创建矩阵与行列转换的功能函数,而在Python中也较多使用二维数组替代
  • 1
  • 2
  • 3
  • 4
  • 5