基于CNN的图像识别基于CNN的图像识别CNN相关基础理论卷积神经网络概述卷积神经网络三大核心概念TensorFlow 2.0 APItf.keras.Sequentialtf.keras.layers.Conv2Dtf.keras.layers.MaxPool2Dtf.keras.layers.Flatten与tf.keras.layer.Densetf.keras.layers.Dropou
转载
2023-10-08 08:09:07
695阅读
一、简介常用文本识别算法有两种:CNN+RNN+CTC(CRNN+CTC)CNN+Seq2Seq+Attention其中CTC与Attention相当于是一种对齐方式,具体算法原理比较复杂,就不做详细的探讨。其中CTC可参考这篇博文,关于Attention机制的介绍,可以参考我的另一篇博文。CRNN 全称为 Convolutional Recurrent Neural Network,在2015年
转载
2024-06-10 10:30:46
58阅读
现代办公要将纸质文档转换为电子文档的需求越来越多,目前针对这种应用场景的系统为OCR系统,也就是光学字符识别系统,例如对于古老出版物的数字化。但是目前OCR系统主要针对文字的识别上,对于出版物的版面以及版面文字的格式的恢复,并没有给出相应的解决方案。对于版面恢复中主要遇到的困难是文字字体的恢复。对于汉字字体识别问题,目前主要有几种方法,但是都是基于人工特征提取的方法。以往的方法主要分为两大类,
转载
2023-10-08 08:08:54
88阅读
文章目录1 概述2 图片识别+定位3 物体监测3.1 选择性搜索3.2 R-CNN3.3 Fast R-CNN3.4 Faster R-CNN4 语义分割4.1 滑窗处理4.2全卷积神经网络5 代码 1 概述CNN主要任务包含物体识别+定位、物体识别、图像分割。图片识别:图片分类,假设图片中是一个主要对象。 图片识别+定位:可以用矩形框,画出图片中的物体。 物体识别:实际情况中一个图片是包含多个
此处摘录一个简单的CNN实例。例子利用Minist数据集,利用两个卷积层(+两个池化层)和全连接层实现了手写数字照片的识别。原图reshape为28*28的照片输入。第一层:卷积层。32个5*5的卷积核,输入为28*28(*1)的照片,输出为28*28*32的照片,也就是把一张照片弄成大小不变的32张照片,1->32实际上是厚度,也就是通道数变了;第二层:池化层。2*2的池化区域,上下步数为
转载
2024-04-08 10:27:10
168阅读
理解 CNN注意:下面提到的图像指位图 目录理解 CNNCNN人类的视觉原理几个关键层卷积层(fliter、kernel)池化层 (pooling)激活层(activate)全连接层(Linear)pytorch实现TextCNN卷积传播图解不同视角看CNN参考 CNN卷积神经网络-CNN 最擅长的就是图片的处理。它受到人类视觉神经系统的启发。CNN的两大特点:能够有效的将大数据量的图片降维成小数
转载
2024-05-06 15:27:27
79阅读
卷积神经网络概述 卷积神经网络是一种前馈多层网络,信息的流动只有一个方向,即从输入到输出,每个层使用一组卷积核执行多个转换。CNN 模型主要包含卷积层、池化层、全连接层。以 CNN模型为基础,将多层卷积和多层池化结合产生新的网络模型,可提高网络结构的准确度。经典的卷积神经网络模型GoogLeNet、AlexNet、VGGNet 等。 利用 CNN 进行图像识别将图像直接输入到模型,不需要传统算法中
转载
2024-02-19 11:12:32
173阅读
一.数据集制作我们用到的数据集是一个2982张关于10个汉字的图片库,下载地址:链接:https://pan.baidu.com/s/1NqjYlRRizf4zzl0TjhgvOA 提取码:hpgj 我们通过PIL库读取图片数据,并生成标签,最终得到一个2982*784的图片数据集和2982*10的标签列表。一下是代码:path_ = 'E:\\中文字符识别\\'
classes = ['0',
转载
2024-04-12 17:01:47
231阅读
目录雪碧图识别(CNN 卷积神经网络训练)数据获取制作数据集训练模型模型调用通过爬虫测试雪碧图识别(CNN 卷积神经网络训练)是一个互联网技能认证网站, 都是些爬虫题目。其中有一道题 爬虫-雪碧图-2 需要使用到图片识别。所以模仿 mnist ,用 CNN 卷积神经网络训练一个模型,准确率达到 99.90% 。Github 项目源码# 基于 tensorflow 2.0
pip install -
转载
2023-10-13 00:26:22
134阅读
深度神经网络实现验证码识别前段时间接到了一个小项目,要做一个验证码的识别,验证码包含数字和英文字母,实现识别的过程用到了CNN网络,最后单个字符的准确率达到90%以上。准备数据集登录界面有一个验证码的网址,直接用代码向服务器请求了一万张二维码下来。 图像处理 先把图片二值化,然后切割成单个的字符。#将验证码切割保存到每个数据标签文件夹
t=2
n=13
for i in xs_o:
pho
转载
2024-07-17 14:18:05
128阅读
CNN图像识别_算法篇前言Keras1外层循环2中部循环3内部循环Matlab CNN ToolBox总结 前言CNN算法方面主要参考的的zh_JNU同学的工作和Deep-Learning-ToolBox-CNN-master的Matlab源码,然后也做了些修改和解读。Keras数据库是5钟分类的400张训练数据和100张测试数据,数据库网盘(提取码:f5ze)可能跟环境版本有关,我这边的预处理
转载
2024-03-28 11:00:00
98阅读
本篇文章我们将学习什么是CNN, CNN如何利用大脑的启发进行物体识别,CNN是如何工作的。 让我们来了解一下我们的大脑是如何识别图像的
根据诺贝尔奖获得者Hubel和Wiesel教授的说法,视觉区域V1由简单细胞和复杂细胞组成。简单的单元有助于特征检测,而复杂的单元则结合了来自小空间邻域的多个这样的局部特征。空间池有助于实现平移不变特征。
当我们看到一个新的图像时,我们可以
转载
2024-05-22 19:59:59
57阅读
在深度学习入门的过程中,卷积神经网络(Convolutional Neural Netwok, CNN)模型的学习是必不可少的,CNN是深度学习理论和方法中的重要组成部分。为了更好的学习到卷积神经网络的应用,将通过卷积神经网络模型在图像识别领域的应用来入门。**应用背景:**本项目将通过识别手写的“对”、“错”图像,也就是常说的“√”“×”,训练数据保存在’checkData.txt’文件中。ch
转载
2024-03-18 20:46:12
73阅读
Tensorflow化骨绵掌第5式-LeNet、AlexNet、VGG16、VGG19打造自己的图像识别模型(3)1、数据制备 本文使用的数据集依然是前两期学习使用的flowers17数据集,所以具体请看前面的数据集介绍。现在我们进行数据集的转换格式成tfrecord格式的数据集。 To_tfrecord.py#coding=utf-8
import os
import tensorflow a
一、机器如何识图先给大家出个脑筋急转弯:在白纸上画出一个大熊猫,一共需要几种颜色的画笔?——大家应该都知道,只需要一种黑色的画笔,只需要将大熊猫黑色的地方涂上黑色,一个大熊猫的图像就可以展现出来。我们画大熊猫的方式,其实和妈妈们的十字绣很接近——在给定的格子里,绣上不同的颜色,最后就可以展现出一幅特定的“图片”。而机器识图的方式正好和绣十字绣的方式相反,现在有了一幅图片,机器通过识别图片中每个格子
转载
2023-11-28 14:48:32
117阅读
作者 | Weize Quan , Kai Wang, Dong-Ming Yan , Xiaopeng Zhang【导读】传统的肉眼识别方法是很难直接识别出 NIs (自然图像) 和 CG (计算机生成的图像)。本文中提出了一种高效的、基于卷积神经网络 (CNN) 的图像识别方法。通过大量的实验来评估模型的性能。实验结果表明,该方法优于现有的其他识别方法,与传统方法中采用 CNN 模
转载
2024-06-03 10:26:11
38阅读
一、深度卷积神经网络模型结构1:LeNet-5LeNet-5卷积神经网络首先将输入图像进行了两次卷积与池化操作,然后是两次全连接层操作,最后使用Softmax分类器作为多分类输出,它对手写数字的识别十分有效,取得了超过人眼的识别精度,被应用于邮政编码和支票号码,但是它网络结构简单,难以处理复杂的图像分类问题 2:AlexNet随着高效的并行计算处理器(GPU)的兴起,人们建立
转载
2023-11-27 10:50:52
500阅读
点赞
3评论
文章目录一、图像识别&经典数据集1、Cifar数据集2、 ImageNet二、CNN三、卷积神经网络常用结构1、卷积层2、池化层(2)实现四、经典CNN模型1、LeNet-5 模型(1998)(1)模型(2)代码示例2、CNN模型正则表达3、Inception-v3模型(1)Inception结构(2)Inception模块实现五、CNN迁移学习1、迁移学习介绍2、TF实现迁移学习(1)获取数据
转载
2024-01-11 20:13:54
291阅读
0. 滴不尽相思血泪抛红豆 上一节讲述了如何通过CNN提取一幅图像的特征后,并将提取的“滤镜”应用于另外一幅图像。其实利用CNN产生这种艺术作品的应用和论文还有很多,例如google著名的DeepDream,它利用以及训练好的网络(例如一个二分类猫狗的网络),识别任意图片(例如一朵云的图片)后将其判别为猫或者狗,并将猫狗的特征复刻到云朵照片上,使计算机“做梦”一样,看到云
转载
2023-12-11 08:53:15
122阅读
论文简介论文中文翻译:《深度人脸识别的大边缘余弦损失》论文名称:《CosFace: Large Margin Cosine Loss for Deep Face Recognition》录用日期:2018年4月3日摘要由于深度卷积神经网络(CNNs)的发展,人脸识别取得了惊人的进展。人脸识别的核心任务是人脸的特征识别,包括人脸的验证和识别。然而,传统的深度cnn的softmax损失通常缺乏识别能力
转载
2024-05-17 13:42:42
32阅读