图的相关算法也算是自己的一个软肋了,当年没选修图论也是一大遗憾。图像处理中,也有使用图论算法作为基础的相关算法,比如图割,这个算法就需要求最大流、最小割。所以熟悉一下图论算法对于图像处理还是很有帮助的。Dijkstra和Bellman-Ford类似,都是解决单源最短路径问题,不同的是这个方法只能解决边为非负的问题,实现的好的Dijkstra算法运行时间要快于Bellman-ford。算法步骤如下:
在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 用于解决最
转载
2024-05-15 09:36:50
74阅读
在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求
转载
2024-08-12 11:51:55
174阅读
算法 - 最短路径(一)- Floyd核心代码算法过程详解基本思想需要注意 核心代码floyd的核心代码极度简单,时间复杂度为O(n3),代码实现部分只有五行:for(k=0;k<=n;k++) //遍历可经过的中点k
for(i=0;i<=n;i++) //遍历起点i
for(j=0;j<=n;j++) /
转载
2023-11-14 10:35:57
109阅读
使用 Dijkstra 算法求图中的任意顶点到其它顶点的最短路径(求出需要经过那些点以及最短距离)。以下图为例:算法思想 可以使用二维数组来存储顶点之间边的关系首先需要用一个一维数组 dis 来存储 初始顶点到其余各个顶点的初始路程,以求 1 顶点到其它各个顶点为例:将此时 dis 数组中的值称为最短路的“估计值”。既然是求 1 号顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶
转载
2023-08-10 19:50:19
161阅读
# -*- coding: utf-8 -*-
# /usr/bin/python
# 作者:kimicr
# 实验日期:20190827
# Python版本:3.6.3
'''
功能:解决最短路径问题的经典Bellman-Ford算法
注意事项:最短路径不唯一,可以多次处理同一个顶点,直到找到最短路径,可以处理负权重、负权重环,
但是负权重环必须是独立的,即起点S可达的顶点V的路径上的某个顶点
转载
2023-09-25 08:27:12
82阅读
最优路径算法(python实现)从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径主要的最优(最短)路径算法:一、深度优先算法;二、广度优先算法;三、Dijstra最短路径;四、floyd最短路径深度优先算法图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问
转载
2023-07-22 00:00:22
161阅读
前言最近在考研复习,刚好学到图这一章了,然后也是学到关于图最难的几个部分了,一个是最小生成树(Prim算法和Kruskal算法),还一个就是最短距离问题了(Dijkstra算法和Floyd算法),我感觉前三个算法都还蛮好理解,就是最后一个Floyd有点没整明白,前三个算法基本上都用到贪心的思想,Prim每次都选择当前未使用的消耗最小的顶点(选点);Kruskal每次都是当前未使用的权值最小的边(选
转载
2023-08-11 09:16:58
91阅读
本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法)。分享给大家供大家参考,具体如下:# coding:utf-8
# Dijkstra算法——通过边实现松弛
# 指定一个点到其他各顶点的路径——单源最短路径
# 初始化图参数
G = {1:{1:0, 2:1, 3:12},
2:{2:0, 3:9, 4:3},
3:{3:0, 5:5},
4:{3:4, 4:0, 5:
转载
2023-07-07 19:54:05
145阅读
题目描述N个城市,标号从0到N-1,M条道路,第K条道路(K从0开始)的长度为2^K,求编号为0的城市到其他城市的最短距离。输入第一行两个正整数N(2<=N<=100)M(M<=500),表示有N个城市,M条道路,接下来M行两个整数,表示相连的两个城市的编号。输出N-1行,表示0号城市到其他城市的最短路,如果无法到达,输出-1,数值太大的以MOD 10000...
原创
2021-07-09 15:22:13
1903阅读
图的最短路径迪杰斯特拉(Dijkstra)算法迪杰斯特拉算法是计算无向图或有向图的最短路径,而且是运用了深度遍历的方法来计算的。其中数组 Patharc[MAXVEX] 用来存储最短路径中每个顶点的下标ShortPathTable[MAXVEX] 用来存放起始顶点到各顶点最短路径的权值和Final[k] 用来标记顶点 k 存在于最短路径的顶点集中进行简单的演示先来张无向图以 V0 为起点开始构建最
转载
2023-12-14 03:44:55
77阅读
贾格尔(Jagger)找到一张地图,该地图指示大量宝藏的位置,并希望找到它们。该地图将几个位置标记为节点和几个边缘,这表示两个位置直接相连。 总共有n个节点和m个边。 贾格尔(Jagger)位于节点1,宝物位于节点n。当他运行最短路径算法以找出通往宝藏的最短路径时,他突然发现除了他的起始节点和宝藏的位置以外,每个节点都有一个怪物。 节点u上的怪物具有力量su。 贾格尔的力量为x。 当且仅当x≥su
转载
2020-11-13 22:32:00
445阅读
2评论
求最短路径的两个常见算法:1,Floyd算法代码如下:dis[i][j]保存顶点i与j之间的距离,如果距离等于-1则表示两点不可达;n表示图中的结点数 for(int ik = 1;k <= n;k++){
for(int i = 1;i <= n;i++){
for(int j = 1;j <= n;j++){
if(dis[i][k] == -1 ||
转载
2023-11-22 21:18:47
374阅读
最短路径问题:如果从图中某一顶点(称为端点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。(1)Dijkstra 算法 (2) Floyd 算法 1、边上权值非负情形的单源最短路径问题 为求得这些最短路径,Dijkstra提出按路径长度的递增次序,逐步产生最短路径的算法。首先求出长度最短的一条路径,在参照它求出长度次短的一条
转载
2024-02-19 20:14:07
33阅读
前言:这个是我人工智能导论的作业(作业报告),参考了网上一些资料。写的不太全。两个算法的思路我没写,具体写的是代码实现思路和用Python的细节。 一,Dijstra算法案例:求从Arad到Bucharest两地的最短距离代码:# -*- coding: utf-8 -*-
"""
Created on Mon Aug 16 18:02:58 2021
@author: mxp
"""
转载
2023-09-20 21:57:34
85阅读
继续上一篇博文的内容,这里要做的是Dijkstra算法,与Floyd算法类似,二者的用途均为求解最短路径距离,在图中有着广泛的应用,二者的原理都是老生常谈了,毕竟本科学习数据结构的同学是不可能不学习这两个算法的,所以在这里我也不再累赘,只简单概述一下这个算法的核心思想: Dijkstra算法的输入有两个参数,一个是原始的数据矩阵,一个是起始的顶
转载
2023-08-17 17:26:19
6阅读
这篇文章主要介绍了python Dijkstra算法实现最短路径问题的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧从某源点到其余各顶点的最短路径Dijkstra算法可用于求解图中某源点到其余各顶点的最短路径。假设G={V,{E}}是含有n个顶点的有向图,以该图中顶点v为源点,使用Dijkstra算法求顶点v到图中其余各顶
转载
2023-08-22 14:36:15
0阅读
最短路径
最短路径的概念最短路径问题是图的又一个比较典型的应用问题。例如,n个城市之间的一个公路网,给定这些城市之间的公路的距离,能否找到城市A到城市B之间一条距离最近的通路呢?如果城市用顶点表示,城市间的公路用边表示,公路的长度作为边的权值。那么,这个问题就可归结为在网中求顶点A到顶点B的所有路径中边的权值之和最小的那一条路径,这条路径就是两个顶点之间的最短路径(Shortest Path),
转载
2023-07-03 19:05:18
221阅读
Python数据结构之最短路径单源点最短路径之Dijkstra算法算法步骤:把V分成两组(1) S: 以求出最短路径的顶点的集合(2) T = V - S : 尚未确定最短路径的顶点集合。将T中顶点按最短路径递增的次序加入到S中。保证:(1)从源点到S中各顶点的最短路径长度都不大于从到T中任何顶点的最短路径长度。(2)每个顶点对应一个距离值: S中顶点:从到此顶点的最短路径长度, T中顶点:从到此
转载
2024-02-20 11:31:54
52阅读
dijkstra算法是单源最短路算法的一种,可用于求从出发节点到所有可到达节点的最短路长度。
下面我们来看下如何记录最短路的路径,有关dijkstra求最短路长度的过程,可以看这篇博客“dijkstra求最短路径长度”。举例
下图中直接给出记录路径的过程,相比于求解最短路长度,只多了一个path数组(初始化为-1)用于记录路径。分析
转载
2023-11-26 14:22:41
100阅读