Python——决策树实战:california房价预测编译环境:Anaconda、Jupyter Notebook首先,导入模块:1 importpandas as pd2 importmatplotlib.pyplot as plt3 %matplotlib inline接下来导入数据集:1 from sklearn.datasets.california_housing importfetc
转载
2024-08-30 20:52:14
191阅读
基于简单MLP模型的加州房价预测摘要机器学习是当前热度非常高的领域,可以对房价数据进行预测,具有很高的研究价值。为了更好地学习机器学习,将理论付诸于实践,本文从加州房价预测实验入手,提出了基于简单MLP的房价预测模型方法研究。 本文的主要研究内容为基于简单MLP模型的方法,提出了加州房价预测的模型。本文首先介绍了研究背景和意义,实验选取了来源于Kaggle上的一次竞赛California Hous
转载
2023-12-08 09:51:32
74阅读
Kaggle之房价预测建模 本文主要建模环节进行讨论,使用单模型或者模型融合对处理好的数据进行了预测,主要是对自己的思路的整理,话不多说,开始。?单模型定义评判标准 由于模型最终使用均方根误差作为评判的标准,所以首先自定义了评价函数。如下:def rmse(model, x, y):
"""定义均方根误差"""
rmse = np.sqrt(-cross_val
转载
2023-09-24 16:49:12
220阅读
房价预测代码实现# 导入需要用到的库
import numpy as np
import matplotlib.pyplot as plt
# 定义存储输入数据(x)和目标数据(y)的数组
x, y = [], []
# 遍历数据集,变量sample对应的正是一个个样本
for sample in open("C:\\Users\\dell\\Desktop\\house_prices.txt"
转载
2023-11-03 06:49:01
66阅读
问题描述:波士顿房价预测是一个经典的机器学习问题,类似于程序员世界的“Hello World”。波士顿地区的房价是由诸多因素影响的,该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素预测房价的模型。预测问题根据预测输出的类型是连续的实数值,还是离散的标签,区分为回归任务和分类任务。因为房价是一个连续值,所以房价预测显然是一个回归任务。下面我们尝试用最简单的线性回归
转载
2023-10-18 11:09:38
562阅读
基于Python的房价预测项目波士顿房价预测数据集描述本作品所用数据是一份源于美国某经济学杂志上,分析研究波士顿房价( Boston House Price)的数据集。数据集中的每一行数据都是对波士顿周边或城镇房价的描述: CRIM: 城镇人均犯罪率 ZN: 住宅用地所占比例 INDUS: 城镇中非住宅用地所占比例 CHAS: CHAS 虚拟变量,用于回归分析 NOX: 环保指数 RM: 每栋住宅
转载
2023-08-30 12:19:43
219阅读
买房应该是大多数都会要面临的一个选择,当前经济和政策背景下,未来房价会涨还是跌?这是很多人都关心的一个话题。今天分享的这篇文章,以波士顿的房地产市场为例,根据低收入人群比例、老师学生数量等特征,利用 Python 进行了预测,给大家做一个参考。该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键、基本的步骤,能够对机器学习基本流程有一个最清
转载
2023-09-13 20:07:40
594阅读
# Python房价预测开发指南
房价预测是一项有趣且实用的机器学习任务。本文将引导你从头到尾实现一个基本的房价预测模型,适合刚入行的开发者。以下是实现这一目标的整个流程:
## 流程概述
我们将整个开发流程分解为以下几个步骤:
| 步骤 | 描述 | 工具/库 |
| ------- | --------
今天给大家介绍一个非常适合新手入门的实战案例。这是一个房价预测的案例,来源于 Kaggle 网站,是很多算法初学者的第一道竞赛题目。该案例有着解机器学习问题的完整流程,包含EDA、特征工程、模型训练、模型融合等。房价预测流程下面跟着我,来学习一下该案例。没有啰嗦的文字,没有多余的代码,只有通俗的讲解。1. EDA探索性数据分析(Exploratory Data Analysis,简称EDA) 的目
转载
2023-12-20 19:04:50
98阅读
这是深度之眼比赛训练营课程的笔记~笔记略为粗糙,Python代码全部来自深度之眼
基本流程:数据读取-数据清洗-数据预处理(特征工程)-构建模型-训练预测-保存提交
比赛链接:House Prices: Advanced Regression Techniqueswww.kaggle.com1 原始数据
2 数据读取和描述性统计
2.1 用profiling做大概的描述性统计
import pan
转载
2023-08-07 21:08:00
202阅读
基于python实现的房价的可视化预测系统 目录面向用户(买房者、卖房者) 1面向开发者(数据挖掘工程师,数据可视化分析师等) 1 3.项目设计 2 3.1. 数据挖掘 (Done) 2 3.2. 建立模型对数据进行分析(Under Construction) 2 3.3. 数据可视化(Partial done) 2 4.目前进展(更新) 2 房屋预测功能具体应用场景: 2 5.截图 3 6.数
转载
2023-08-07 20:51:22
124阅读
前言这一篇文章,我会详细介绍如何利用Python来实现线性回归以及线性回归的实战模拟,以及回归模型的评估指标的详细介绍,感兴趣的朋友可以看一看。 目录前言1 线性回归的Scikit-learn实现1.1 导入模块后开始下载数据1.2 拆分数据集(训练集和测试集)1.3 线性回归建模1.4 训练数据1.5 模型评估1.6 将数据集标准化之后再训练1.7 绘制拟合图像2 多重共线性2.1 理解与代码实
转载
2023-10-26 11:28:37
593阅读
一、快速查看数据结构import numpy as np
import pandas as pd
csv_path = "./datasets/housing/housing.csv"
housing = pd.read_csv(csv_path)
housing.head()#获取数据集简单描述housing.info()#输出结果RangeIndex: 20640 entries, 0 to
转载
2023-12-10 20:31:13
94阅读
目录1、波士顿房价预测介绍2、线性回归算法3、调用scikit-learn库实现房价预测1、波士顿房价预测介绍问题描述:波士顿房价数据集统计的是20世纪70年代中期波士顿郊区房价的中位数,统计了城镇人均犯罪率、不动产税等共计13个指标,统计出房价,试图能找到那些指标与房价的关系。数据集中一共有506个样本,每个样本包含13个特征信息和实际房价,波士顿房价预测问题目标是给定某地区的特征信息,预测该地
转载
2023-09-05 08:22:25
207阅读
Kaggle房价预测详解1.导入数据2.查看各项主要特征与房屋售价的关系查看中央空调与售价关系查看装修水平与房价关系查看建造日期与售价关系不同地段与房价关系查看地皮面积与房价关系查看地下室总面积与房价关系查看关联性3.训练集数据预处理训练数据预处理创建机器学习模型得出预测结果4.导入测试集数据测试集数据预处理创建训练集特征值得到预测数据4.保存预测结果 1.导入数据导入库# 导入需要的模块
im
转载
2023-12-06 22:28:14
409阅读
1评论
Kaggle(一) 房价预测 (随机森林、岭回归、集成学习)代码有不明白的 欢迎来微信公众号“他她自由行”找我,回复任何话都可以 我都会回你哒~ 项目介绍:通过79个解释变量描述爱荷华州艾姆斯的住宅的各个方面,然后通过这些变量训练模型,
来预测房价。
kaggle项目链接:https://www.kaggle.com/c/house-prices-advanced-regression-te
转载
2023-11-29 09:21:59
247阅读
0 简介 赛题描述 首先,你要做的第一步工作就是解读数据以及相关文件。从竞赛的描述可以看出,你需要做的就是利用数据集中的关于房子的79个特征数据去预测房价 (SalePrice),但是这些特征数据既有离散型的也有连续型的,有数值型的也有字符型的,而且存在大量的缺失值,以及一定数量的异常值。具体的数据解读可以查看比赛方提供的data_description.txt这
转载
2024-05-15 12:18:57
160阅读
前言自己动手,爬取58同城上的租房网站信息,然后用该数据预测未知的房源价格。爬虫部分不是我写的,我只是完成了其中的一部分预测功能。 预测主要是使用回归预测,预测结果比较简陋,但是也可以通过这个小项目,来简单地学习一下基于Python的回归预测。 在本文中,我实现了三种回归预测算法: 1. 支持向量回归(SVR) 2. logistic回归 3. 以及使用核技巧的岭回归(L2回归)实现过程
转载
2023-09-05 14:11:33
134阅读
系列文章目录一、Python二手房价格预测(一)——数据获取二、Python二手房价格预测(二)——数据处理及数据可视化 文章目录系列文章目录前言一、数据处理二、模型训练1.引入库2.读入数据3.评价指标4.线性回归5.K近邻6.决策树回归7.随机森林8.各模型结果三、重要特征筛选结语 前言 在上次分享中我们对数据进行了部分预处理和数据可视化,
转载
2023-06-16 19:02:54
1165阅读
点赞
实战Kaggle比赛:房价预测让我们动手实战一个Kaggle比赛:房价预测House Prices - Advanced Regression Techniques | Kaggle。本文将提供未经调优的数据的预处理、模型的设计和超参数的选择。通过动手操作、仔细观察实验现象、认真分析实验结果并不断调整方法,得到满意的结果。获取和读取数据集比赛数据分为训练数据集和测试数据集。两个数据集都包括每栋房子
转载
2024-05-29 11:06:38
101阅读