PSO(粒子群优化)是一种优化算法,它模拟了鸟群觅食时的行为。BP(反向传播)神经网络是一种常用的机器学习算法。本文将介绍如何使用PSO算法对BP神经网络进行优化,以提高其训练效果。我们将使用Python语言来实现这个过程。
首先,我们需要了解PSO算法的原理。PSO算法通过模拟鸟群觅食的行为来搜索最优解。算法中的每个个体被称为粒子,它们在解空间中搜索最优解。每个粒子都有自己的位置和速度,通过不
原创
2023-12-12 13:37:16
171阅读
1、摘要本文主要讲解:PSO粒子群优化-LSTM-优化神经网络神经元个数dropout和batch_size,目标为对沪深300价格进行预测 主要思路:PSO Parameters :粒子数量、搜索维度、所有粒子的位置和速度、个体经历的最佳位置和全局最佳位置、每个个体的历史最佳适应值LSTM Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、batch_
转载
2023-11-01 19:04:01
349阅读
文章目录一、粒子群优化算法(PSO)是什么?二、粒子群优化算法有什么用?三、粒子群优化算法的适用范围?四、算法简介(有助于理解)五、算法流程第一步:初始化第二步:计算粒子的适应度第三步:更新个体极值与全局最优解第四步:更新个体的速度和位置第五步:设置终止条件六、matlab代码实现七、运行结果1、各粒子的初始状态位置2、各粒子的状态位置变化图3、各粒子的最终收敛位置4、收敛过程七、粒子群优化算法
转载
2023-08-16 13:03:21
216阅读
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 1.项目背景灰狼优化算法(GWO),由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优化算法。灵感来自于灰狼群体捕食行为。优点:较强的收敛性能,结构简单、需要调节的参数少,容易实现,存在能够自适应调整的收敛因子以及信息
转载
2024-01-04 14:49:23
22阅读
系列文章手把手教你:人脸识别考勤系统 文章目录系列文章项目简介一、粒子群算法(PSO)简介二、项目展示二、环境需求环境安装实例三、重要功能模块介绍1.数据预处理模块(data_create.py)2.定义粒子群优化算法(n_PSO.py)3.定义被优化CNN模型4.使用PSO优化CNN初始化学习率(ModelTrain.py)5.模型分类预测四、完整代码地址 项目简介本文主要介绍如何使用pytho
转载
2023-10-04 11:27:00
245阅读
PSO改进系列算法简介1、引入w的PSO (标准粒子群优化算法) :标准粒子群优化算法,引入惯性权重w,w随着迭代次数的变化而变化。 2、APSO (Adaptive Particle Swarm Optimization) :自适应粒子群优化算法,引入三种策略:参数自适应策略,精英学习策略,状态评估策略。 3、CPSO (Cooperative Particle Swarm Optimizati
转载
2024-03-26 05:57:18
77阅读
# PSO-BP神经网络的实现流程
## 1. 准备工作
在开始实现PSO-BP神经网络之前,我们需要确保已经安装好以下Python库:
- numpy:用于进行数值计算和矩阵运算
- matplotlib:用于进行数据可视化
- scikit-learn:用于加载和预处理数据集
## 2. 数据准备
首先,我们需要准备训练数据和测试数据。这里我们以手写数字识别为例,使用MNIST数据集作为训
原创
2023-07-23 11:12:09
396阅读
# PSO-BP神经网络
## 引言
在机器学习领域中,神经网络是一个常用的模型。然而,神经网络训练过程中常常容易陷入局部最优解。为了解决这个问题,研究者们提出了很多优化算法。其中,组合了粒子群优化(PSO)和反向传播(BP)算法的PSO-BP神经网络成为了一种较为有效的训练方法。本文将介绍PSO-BP神经网络的原理,以及如何使用Python实现该算法。
## PSO-BP神经网络原理
PSO
原创
2023-08-18 07:22:42
999阅读
点赞
2评论
PSO_BP回归预测Python实现
在现代的数据分析和机器学习中,回归预测是一项基础而重要的任务。通过回归模型,我们能够从数据中提取规律,以预测未来的数值。这篇文章将介绍粒子群优化 (PSO) 算法与反向传播 (BP) 神经网络的结合,创造一个高效的回归预测模型,我们将用 Python 实现这一过程。
> 在进行回归预测时,粒子群优化算法能够更好地找到最优解,而 BP 神经网络则通过不断的训
?欢迎来到智能优化算法的世界 ?欢迎关注?点赞?收藏⭐️留言??本文由卿云阁原创!?本阶段属于筑基阶段之一,希望各位仙友顺利完成突破?首发时间:?2021年1月7日?✉️希望可以和大家一起完成进阶之路!?作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!目录0️⃣基本介绍1️⃣代码部分2️⃣结果 0️⃣✨✨✨基本介绍✨✨✨ BP神经
转载
2023-07-31 15:42:26
180阅读
【废话外传】:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容:看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心向往之?现在入坑之后就是下面的表情:好了好了,玩笑就开到这里,其实我是真的很喜欢这门学科,要不喜欢,老子早考公务员,找事业单位去了,还在这里陪你们牛逼打诨?写博客,吹逼?1神经网络历史(本章来自维基百科
转载
2024-02-10 19:52:24
73阅读
粒子群优化算法(PSO)Particle Swarm Optimization1、 算法起源粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,
转载
2024-01-11 08:11:51
106阅读
目录摘要:1.BP模型神经网络模型2.粒子群优化算法(PSO)伪代码实现3.粒子群算法结合BP神经网络(PSO-BP)4.程序运行结果5.本文Matlab代码摘要:BP神经网络是一种常见的多层前馈神经网络,本文通过粒子群算法(PSO)对BP神经网络的网络参数进行寻优,得到最优化的网络参数,并与未使用PSO的BP网络对同一测试样本进行预测,对比分析并突出PSO-BP的优越性。本文章代码可改性强,注释
转载
2023-09-26 12:12:50
143阅读
前言前段时间在一个朋友那么得到的灵感,想到可以用音乐播放页面作为一张海报图片。其实接下来要讲的和海报还是有差距的,而具体实现也只是简单的图片粘贴,但是在效果上还是不错的。效果图如下,希望大家喜欢:左边是原图,右边是需要添加到中间的图,也是图的主角。其实如果直接用ps实现上面的图是非常简单的,反倒是用代码实现有点曲折,不过实现过程还是非常有趣的,希望这篇博客可以可以让你学到知识。用Pillow创建圆
转载
2023-11-20 07:05:28
50阅读
1.摘要 深度神经网络(DNN)在各种任务中取得了前所未有的成功,但是,这些模型性能直接取决于它们的超参数的设置。在实践中,优化超参数仍是设计深度神经网络的一大障碍。在这项工作中,我们建议使用粒子群优化算法(PSO)来选择和优化模型参数。在MNIST数据集上的实验结果显示:通过PSO优化的CNN模型可以得
转载
2023-10-11 09:42:46
244阅读
BP神经网络主要用于预测和分类,对于大样本的数据,BP神经网络的预测效果较佳,BP神经网络包括输入层、输出层和隐含层三层,通过划分训练集和测试集可以完成模型的训练和预测,由于其简单的结构,可调整的参数多,训练算法也多,而且可操作性好,BP神经网络获得了非常广泛的应用,但是也存在着一些缺陷,例如学习收敛速度太慢、不能保证收敛到全局最小点、网络结构不易确定。另外,网络结构、初始连接权值和阈值的选择对网
转载
2023-11-29 17:23:49
255阅读
# PSO-BP神经网络
## 介绍
神经网络是一种计算模型,模拟了人脑神经元之间的连接和信息传递过程。BP(Back Propagation)神经网络是一种常用的神经网络模型,通过反向传播算法来训练和优化网络权重。然而,传统BP算法容易陷入局部最优解,训练效果不佳。
为了解决传统BP算法的问题,研究者们提出了基于粒子群优化(Particle Swarm Optimization,PSO)算
原创
2023-07-21 13:41:00
692阅读
python实现粒子群算法(PSO)优化神经网络超参数——以预测英雄联盟比赛结果为例
本实验根据英雄联盟的对局数据,搭建全连接网络分类模型,以粒子群算法对神经网络的节点数和dropout概率进行调优,最后对比默认模型和优化后的模型对英雄联盟比赛结果的预测准确率 。
粒子群优化算法(PSO)是一种进化计算技术源于对鸟群捕食的行为研究。粒子群优化算
转载
2023-06-21 11:15:58
272阅读
## PSO-BP神经网络原理实现
### 一、流程
下面是实现PSO-BP神经网络的整体流程:
| 步骤 | 操作 |
| --- | --- |
| 1 | 数据预处理 |
| 2 | 初始化神经网络 |
| 3 | 定义适应度函数 |
| 4 | 粒子群初始化 |
| 5 | PSO迭代 |
| 6 | 更新粒子速度和位置 |
| 7 | 更新粒子个体最优解和全局最优解 |
| 8 |
原创
2023-08-12 13:02:47
519阅读
1.项目背景灰狼优化算法(GWO),由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优化算法。灵感来自于灰狼群体捕食行为。优点:较强的收敛性能,结构简单、需要调节的参数少,容易实现,存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。缺点:存在着易早熟收
转载
2024-01-11 08:07:20
46阅读