一、产品简介PCA9685芯片,是16通道12bit PWM舵机驱动,主控板通过I2C控制芯片,进而可以驱动16个舵机,这样可以解决需要很多电机控制的项目,会大量占用主控板的引脚,也会影响主控板的处理能力。 引脚定义:GND:接地OE:GPIO(低电平有效,板载已经将OE拉低,使用时可以不接)SCL:I2C时钟SDA:I2C数字VCC:5VV+:NC二、技术参数供电电压:5V接口:I2C接口,最大
转载
2024-06-11 15:15:47
94阅读
://blog..net/jerr__y/article/details/53188573 本文主要参考下面的文章,文中的代码基本是把第二篇文章的代码手写实现了一下。 - pca讲解:://../jerrylead/archive/2011/04/1
转载
2018-01-13 20:15:00
272阅读
2评论
PCA算法是机器学习与深度学习中很常见的一种算法, 近期看花书的时候看到了这个算法,所以在写完理论之后也想通过一些实例来帮助理解PCA。 python实现PCAPAC步骤原数据D去中心化D’ = D - D^求协方差矩阵C = np.cov(D’)求C的特征值和特征向量特征值从大到小排列取前k个取这k个特征值对应的特征向量构成P降维后的数据Y = D’P二维数据可视化随机产生m条2维数据
pca得
转载
2023-12-19 21:50:25
98阅读
一、降维的基本概念 对于实际分析过程中的高维数据,在进行具体的数据分析和特征建模之前,需要进行数据降维处理。降维是指通过某种方法从原始数据的N个特征中选取K个(K<N)进行数据表示,在减少数据信息丢失的前提下实现原始数据的压缩表示,其主要目的包括以下几点:&n
转载
2023-11-25 20:39:54
99阅读
PCA 实现: from __future__ import print_functionfrom sklearn import datasetsimport matplotlib.pyplot as pltimport matplotlib.cm as cmximport matplotlib.colors as colorsimport numpy as np# matplotlib inl
转载
2019-08-26 21:05:00
335阅读
2评论
我目前认为的,并不代表正确 pca主要用于降维 图片来源:https://www.zhihu.com/question/41120789/answer/474222214 例如二维到一维,求协方差矩阵的单位特征向量,得a1和a2,其中一个就为x轴得方向向量,一个为y的 让x和y一个乘a1,一个乘a2 ...
转载
2021-09-21 18:00:00
166阅读
3评论
主成分分析(Principal components analysis)-最大方差解释
转载
2023-04-12 11:42:18
78阅读
参考: [1] 机器学习-白板推导系列(五)-降维(Dimensionality Reduction)
转载
2019-04-15 20:31:00
151阅读
点赞
3评论
PCA(Principal Component Analysis),称主成分分析,从统计学的角度来说是一种多元统计方法。PCA通过将多个变量通过线性变换以选出较少的重要变量。它往往可以有效地从过于“丰富”的数据信息中获取最重要的元素和结构,去除数据的噪音和冗余,将原来复杂的数据降维,揭...
转载
2013-11-12 20:22:00
206阅读
2评论
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域。它的主要作用是对高维数据进行降维。PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。 PCA的主要算法如下:组织数据形式,以便于模型使用;计算样本每个特征的平均值;每个样本数据
转载
2023-12-12 12:39:38
57阅读
# 如何实现Python文件处理的包
作为一名经验丰富的开发者,我将教你如何实现一个Python文件处理的包。首先,让我们看一下整个流程:
| 步骤 | 描述 |
|------|----------------------|
| 1 | 创建一个Python包 |
| 2 | 编写文件处理的代码 |
| 3 | 添加文件处理的功能
原创
2024-04-21 03:49:17
11阅读
前言构建包的过程有些复杂,但从长远来看是值得的,尤其是可以创建属于自己的Python包。本文的目的是通过对构建一个新发行包的案例研究,让您了解需要构建什么以及如何构建python包的基础知识。image开始首先,您肯定需要设置一个或多个内容,以便了解如何构建python包。因此,需要的东西的如下:IDE (Vs Code)Python 3构建Python包本文中构建的标称为b_dist。b_dis
转载
2023-08-28 22:20:51
35阅读
# Python传输文件的包实现流程
## 1. 确定传输协议
在开始实现Python传输文件的包之前,我们首先需要确定使用的传输协议。常见的传输协议包括FTP、HTTP、SFTP等。在本例中,我们将使用HTTP协议来实现文件传输。
## 2. 准备开发环境
在开始实现之前,我们需要确保已经安装了Python环境,并安装了相应的依赖库。在本例中,我们将使用`requests`库来进行HTTP请
原创
2023-10-16 09:54:16
35阅读
1、很多地方的文件夹都有__init__.py。网上一般都说,有了这个东西会把它当作一个包,否则import这个文件夹会出错。但这就好像和说python文件中如果有中文就要在开头写 # coding =utf8这句话一样,说话囫囵吞枣不带语境,导致误会新手。2、实际上空的__init__.py文件在python3.3以上没有卵的必要。如果用python3.3以上在__init__.py中写了内容,
转载
2023-08-08 17:56:22
125阅读
基本思路:(1)对所有的样本进行demean处理。(2)梯度上升法求系数。注意:和线性回归不同点。 每次求一个单位向量;初始化w不能为0向量;不能使用sklearn进行标准化了。(3)批量和随机梯度同样适用梯度上升法。(4) 第一主成分和后续主成分。先将数据进行改变,将数据在第一主分上的分量去掉。在新的数据上求第二主成分。这是循环往复过程。一、P
转载
2023-08-31 20:43:16
58阅读
Handwritten digits from sklearn.datasets import load_digits digits= load_digits() digits.keys() dict_keys(['data', 'target', 'target_names', 'images', ...
转载
2021-08-18 17:34:00
341阅读
2评论
python_pca降维'''pca''''''from sklearn.decomposition import PCApca=PCA(n_components=2, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=123)col_for_pca=['l_...
原创
2022-07-18 14:56:47
103阅读