图像变换的基本模型变换模型是指根据待匹配图像与背景图像之间几何畸变的情况,所选择的能最佳拟合两幅图像之间变化的几何变换模型。可采用的变换模型有如下几种:刚性变换、仿射变换、透视变换和非线形变换等,如下图:刚体变换(图像旋转) 如果一幅图像中的两点间的距离变换到另一幅图像中后任然保持不变,则这种变换称为刚体变换(Rigid Transform).刚
转载
2024-04-27 20:03:21
45阅读
# Opencv Python 车牌识别 模板匹配
## 介绍
车牌识别是计算机视觉中的一个常见任务,它可以对图像或视频中的车牌进行自动识别。模板匹配是一种常用的图像处理技术,它可以通过比较图像中的局部区域与模板图像进行匹配。在本文中,我们将使用Opencv和Python来实现车牌识别的模板匹配算法。
## 原理
模板匹配是一种基于像素级别的匹配方法。它通过计算图像中的局部区域与一个预先定
原创
2023-09-11 06:37:37
396阅读
在opencv里,模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1) 1.相关函数:opencv里提供cv2.matchTemplate(src, templ
转载
2024-08-19 09:34:34
38阅读
------韦访 201810121、概述上一讲学习了opencv的一些基本的知识,但是,不玩几个实例是学不会的,所以就从opencv比较热门的车牌识别开始,继续学习。2、车牌识别的步骤一般车牌识别分为4步:图像获取、车牌定位、车牌字符分割和车牌字符识别。图像获取:你要识别车牌,至少得有包含车牌的图片吧?车牌定位:一般图像获取的图片不可能只有一张完整的车牌,而没有其他背景的,如下图,我们
转载
2023-10-07 21:34:41
685阅读
最下面有我这一路下来,所遇到的一些坑。OpenALPR 简介OpenALPR 是一个使用 C++ 编写的开源自动牌照识别库。 这个库能分析图像和视频流以识别车牌。这个库,需要什么东西?需要一些必要的软件包;需要Tesseract OCR 软件依赖;需要OpenCV 软件依赖。(是的,我们还需要安装OpenCV)开始步骤一:先更新一下我们树莓派系统的软件包:sudo apt-get update
s
转载
2024-03-23 13:58:11
234阅读
opencv实现了一部分通过模板与目标图像进行寻找最佳匹配的方面matchTemplat();这个方法网上有很多讲解,基本思想是将模板图像在目标图像上滑动逐一对比,通过统计的基本方法进行匹配,比如方差检验,相关性检验等方法来寻找最佳匹配;话不多多说吧,从网上找到的一些实验代码,实验了一下:1简单匹配代码://模板匹配,简单的寻找拷贝图,效果一般
void ImgMatch()//图像匹配
{
转载
2024-03-18 09:10:04
107阅读
本文将基于OpenCV实现简单的数字识别。这里以游戏Angry Birds为例,通过以下几个主要步骤对其中右上角的分数部分进行自动识别。 1. 学习分类器根据训练样本,选取模型训练产生数字分类器。这里的样本可以是通用的数字样本库(如NIST等),也可以是针对应用场景而制作的专门训练样本。前者优在泛化性,后者强在准确率,当然常用做法是将这两者结合,即在通用数字库基础上做修改。另外这里由于模式并不复杂
转载
2023-09-30 09:35:40
150阅读
需配置好OpenCV和OCR环境下运行1、OpenCV简介OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python, Java and MATLAB/OCTAVE (版本2.5)的接口。这些语言的API接口函数可以通过在
转载
2023-11-26 16:43:14
111阅读
# Emgu CV 深度学习模板识别
在计算机视觉领域,模板识别是一项重要的技术。它能够通过比对图像中的特征实现物体识别、手势识别等多种应用。本文将介绍如何使用Emgu CV结合深度学习进行模板识别,并附带简单的示例代码。
## Emgu CV 简介
Emgu CV 是一个 .NET 接口包装库,基于 OpenCV。在 C# 环境下,Emgu CV 使得我们能够轻松地利用 OpenCV 强大
目录前言 一、图像处理?二值化处理?膨胀、腐蚀?开运算、闭运算二、案例实现Step1:灰度处理Step2:对视频进行帧差处理Step3:二值化处理Step4:腐蚀处理Step5:膨胀处理 Step6:标记、框选目标?完整代码三、总结 前言 本文主要以车辆识别为目标,利用 C++语言 结合 Qt + OpenCV 进行图像处理相关步骤的讲解一、图像处理?二值化
转载
2023-10-08 11:58:37
187阅读
霍夫线变换的思想是:霍夫线变换必须应用在二值图像上,它认为图像上每一个点都有可能是某条直线上的一个点,对过每点的所有直线进行投票,根据设定的权重做最终的判断,这个是霍夫线变换的理论基础。OpenCV 4 提供了检测图像边缘是否存在直线和圆形的检测算法直线检测霍夫直线变换霍夫变换中存在的两个重要的结论(1)图像空间中的每条直线在参数空间中都对应着单独一个点来表示。(2)图像空间中的直线上任何像素点在
转载
2023-11-28 06:08:38
131阅读
霍夫线变换 简介:1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着
转载
2023-08-02 15:18:04
356阅读
opencv的puttxt()函数不能汉字输出,这也是困惑好多人都问题,经过几天的查资料,改代码终于成功实现opencv汉字输出。第一种方法是 是通过写一段代码,能够转码,封装一下再调用,从而实现汉字输出。第二种方法是 使用PIL进行转换一下以下这个是ft2.py 实现转码的代码# -*- coding: utf-8 -*-
#
转载
2023-11-01 17:28:25
178阅读
# 使用OpenCV识别形状的完整指南
在机器视觉领域,OpenCV是一个非常流行的图像处理库,它提供了大量的功能来帮助我们实现图像和视频中的各种视觉任务。今天我们将介绍如何使用Python中的OpenCV库来识别形状。本文将涵盖整个流程,从准备工作到实现细节,适合刚入行的小白学习。
## 一、项目流程概述
下表展示了实现OpenCV形状识别的整体步骤:
| 步骤 | 描述
§00 前 本文将会介绍使用OpenCV进行图像块简单检测算法。0.1 什么是图像块? 所谓图像块就是在图像中一组相邻的具有相同特性(比如灰度值)像素区域。在前面的图像中,那些紧挨在一起的黑色像素区域就是图像块。图像块检测就是找到并标记出这些区域。0.2 检测样例代码 OpenCV提供了检测图像块的方便方法并使用不同特征将它们过滤出来。 下面以简单示例开始:Python# Standar
转载
2023-11-01 23:56:29
342阅读
预备知识 下面两个都不是必备知识,但是如果你想了解更多内容,可参考这两篇文章。 OpenCV 2.4+ C++ SVM介绍 OpenCV 2.4+ C++ SVM线性不可分处理 SVM划分的意义 到此,我们已经对SVM有一定的了解了。可是这有什么用呢?回到上一篇文章结果图: 这个结果图的意义在于,他成功从二维划分了分类的区域。于是如果以后,有一个新的样本在绿色区域,那么我们就可以把他
转载
2023-09-05 21:34:00
114阅读
目录一、什么是物体测量?二、如何实现物体测量?三、算法实现细节四、算法代码实现五、算法运行过程六、效果展示七、问题探讨参考资料注意事项 一、什么是物体测量?所谓的物体测量就是算法通过计算后自动的输出图像中各个物体的大小,具体如下图所示: 我们将该图输入到设计的算法中,算法通过计算依从从左往右输出图片中各个物体的大小并输出相应的BB,这个任务在现实场景中具有很多的应用,下面就来看看如何来实现这
转载
2023-10-09 00:11:06
374阅读
目录什么是opencv?图像数字化基础知识图像获取图像变换改变大小车牌识别内容分析定位车牌图像降噪形态学处理阈值分割+边缘检测 什么是opencv?OpenCV(Open Source Computer Vision Library)是开源的计算机视觉和机器学习库,提供了C++、C以及python等接口,并支持Windows、Linux、Android、MacOS平台。在2016年以后,深度学习
转载
2023-11-07 19:26:46
590阅读
最近完成了基于MFC 的车牌识别系统:整个系统包括车牌定位 车牌矫正 车牌切割 及车牌识别四大部份在整体制作过程中有所感悟:首先最大的感悟是,因为我没有搜索到可用于识别的车牌库图片,所以就从网上随便选取了一系列车牌图片用于识别,由于随机性 导致在对一些参数设置时不能对所有图片满足,但经过不断的尝试,最终可将大部分图片成功定位 矫正 切割。其中付出的代价时很艰辛的。如二值化处理,因为图片
转载
2024-02-27 21:59:43
39阅读
车牌识别包括车牌检测(通过图像分割、特征提取获得车牌位置)+车牌识别(对检测到的车牌进行字符内容识别)。一、基本流程如下:1.车牌检测1)读取需要进行车牌识别的图片;2)对图像进行灰度化处理(高斯模糊可选择是否进行)和灰度拉伸;3)进行开运算,消除图像中的噪声;4)将灰度拉伸后的图像和开运算后的图像求差
转载
2023-11-11 22:58:46
500阅读