# Python List实现指南 ## 介绍 作为一名经验丰富的开发者,我将指导你如何在Python中实现列表的操作。是指将多维列表转换为一列表。这对于处理复杂的数据结构和算法问题非常有用。在本文中,我将为你展示实现的步骤,并提供相应的代码示例。 ### 流程图 ```mermaid journey Title: Python List实现指南 教会小白
原创 2024-04-27 07:33:05
197阅读
作者丨豌豆花下猫 Python 的内置函数 sum() 可以接收两个参数,当第一个参数是二列表,第二个参数是一列表的时候,它可以实现列表的效果。那篇文章发布后,猫哥收到了一些很有价值的反馈,不仅在知识面上获得了扩充,在思维能力上也得到了一些启发,因此,我决定再写一篇文章,继续跟大家聊聊 sum() 函数以及列表。若你读后有所启发,欢迎留言与我交流。有些同学表示,没想到 sum
转载 2023-10-29 19:00:38
47阅读
♚ 豌豆花下猫,某985高校毕业生, 兼具极客思维与人文情怀 。专注python技术、数据科学和深度学习,力图创造一个有趣又有用的学习分享平台。上个月,有同学问了个题目,大意可理解为列表 ,例子如下:oldlist = [[1, 2, 3], [4, 5]] # 想得到结果: newlist = [1, 2, 3, 4, 5]原始数据是一个二列表,目的是获取该列表中所有元素的具体值
转载 2023-10-19 18:54:32
124阅读
Python 中,通常是指将高数据结构转换为低数据结构的过程。在处理列表(list)时,特别是嵌套列表(即列表中的列表),是一个常见的问题。本文将详细介绍如何实现 Python 列表的,提供具体的代码示例,并以视觉化的方式帮助理解。 ### 什么是是指将数据从高维空间映射到低维空间的过程。它在数据分析和机器学习中非常重要,特别是在特征选择、数据可视化和模型优化中
原创 8月前
93阅读
本文包括两部分,使用python实现PCA代码及使用sklearn库实现PCA,不涉及原理。总的来说,对n的数据进行PCA维达到k就是:对原始数据减均值进行归一化处理;求协方差矩阵;求协方差矩阵的特征值和对应的特征向量;选取特征值最大的k个值对应的特征向量;经过预处理后的数据乘以选择的特征向量,获得结果。 实验数据数据data.txt使用[2]中编写的数据,以下是部分数据截
转载 2023-08-10 11:37:47
229阅读
/** * list集合使用 * List * |--Vector * |--ArrayList * |--LinkedList* 有序的 collection(也称为序列)。对列表中每个元素的插入位置进行精确地控制。* 可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。* 特有方法:* 1,添加、2,删除、3,修改、4,获取、5,迭代器使用(重点) * */ public c
本教程使用的课本是《Python编程:从入门到实践》,作者:[美] Eric Matthes本节介绍列表的操作,包括列表的排序、元素遍历等操作。一、列表的排序有时候我们需要按升序或降序排列列表的元素,可以用sort()方法,sort方法默认是升序,如果加个参数,变成sort(reverse=True)就会按降序排列,见下面的代码:Mylists = [2,58,64,21,33,5,8,9,4,1
数据:定义:特征的数量减少特征选择:原因:1、冗余部分特征相关性高,容易消耗计算机性能2、噪声:部分特征对预测结果有负影响工具:1、Filter(过滤式):VarianceThreshold   (sklearn.feature_selection.VarianceThreshold)2、Embedded(嵌入式):正则化、决策树3、Wrapper(包裹式)方差大小来考虑P
sklearn中的算法1. PCA与SVD sklearn中算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。在2006年,Netflix曾经举办了一个奖金为100万美元的推荐系统算
转载 2024-01-08 14:23:47
59阅读
Python中T-SNE实现 from sklearn.manifold import TSNE from sklearn.datasets import load_iris from sklearn.decomposition import PCA import matplotlib.pyplot as plt iris = load_iris() X_tsne = TSNE(
转载 2023-05-30 19:50:27
103阅读
 作者:  郗晓琴  熊泽伟今天这篇文章是介绍目前前沿好用的一种可视化算法:t-SNE,并且附带python的实际例子加以讲解。t-SNE是什么技术我们直接开门见山好了,第一件事:什么是t-SNE?t-SNE的全称叫做t分布式随机邻居嵌入(t-SNE)。该算法是一种非监督的非线性技术,主要用于数据探索和可视化高数据。简而言之,t-SNE为我们提供了数据
数据概述1.数据概述所谓的数据就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中,可以解决大规模特征下的数据显示问题,使得数据集更易使用,降低后续算法的计算,消除噪声影响并使得结果更易理解。 数据的方法有很多,可从线性或非线性角度对其简单分类。 线性是指通过所得到的低数据能保持高数据点之间的线性关系,主要包括主成分分析(Principal Compone
1 基于特征选择的维特征选择是在数据建模过程最常用的特征手段,简单粗暴,即映射函数直接将不重要的特征删除,不过这样会造成特征信息的丢失,不利于模型的精度。由于数据的Fenix以抓住主要影响因素为主,变量越少越有利于分析,因此特征选择常用于统计分析模型中。1.1特征选择的方法过滤法(Filter):按照发散性或者相关性对各个特征进行评分,通过设定阈值或者待选择阈值的个数来选择特征。包装法(Wr
网上关于各种算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。所谓,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d<
使用sklearn库初次尝试PCA和T-SNE,原理还不太理解,写错了请一定指出,或者等我自己发现hhhh1. PCA首先读入sklearn里自带的鸢尾花数据库,并调用相关的包,再查看一下这些数据都是些啥:import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets impor
算法简介很多算法可以回归也可以分类算法PCA(主成分分析)LDA(线性判别分析)MDS(多维标度法)流形学习Isomap 简介很多算法可以回归也可以分类把连续值变为离散值:1.回归模型可以做分类:可以依据阀值(二元分类或多元分类)来分类2.逻辑回归二元分类,一个阀值。3.连续值进行分箱,实现多元分类4.把离散值变为连续值:插值法(1~2,在离散值之间插入足够密集的值)算法
转载 2023-09-19 07:01:06
165阅读
注: 在《SVD(异值分解)小结 》中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数。但是这里会利用到SVD的原理,如何大家还不明白它的原理,可以去看看《SVD(异值分解)小结 》,或者自行百度/google。1、SVD算法实现1.1 SVD原理简单回顾有一个\(m \times n\)
转载 2023-08-03 16:23:55
131阅读
主成分分析(Principal Component Analysis)Step 1:去相关(Decorrelation)Step 2: (Reduce Dimension)数据是文本时Step 1:去相关(Decorrelation)        旋转数据样本,使它们与坐标轴对齐,并且样本均值变为0。##########################
转载 2023-06-21 21:04:08
216阅读
深度学习巨头之一的Hinton大神在数据领域有一篇经典论文Visualizing Data using t-SNE。该方法是流形(非线性)数据的经典,从发表至今鲜有新的方法能全面超越。该方法相比PCA等线性方法能有效将数据投影到低维空间并保持严格的分割界面;缺点是计算复杂度大,一般推荐先线性然后再用tSNEpython sklearn有相应的实现。我现在用Tensorflow
你观察到的性能差是由Python垃圾收集器中的错误引起的。要解决此问题,请在构建列表时禁用垃圾回收,并在完成后将其打开。你会发现性能接近在Python中预期列表附加的amoritized 0(1)行为。(你也可以调整垃圾收集器的触发器或选择性地调用collect随着进度,但我不在这个答案中探索这些选项,因为它们更复杂,我怀疑你的用例是适合上述解决方案。)背景:记者观察到,随着列表长度的增长,将复杂
  • 1
  • 2
  • 3
  • 4
  • 5