背景与原理:PCA(主成分分析)是将一个数据的特征数量减少的同时尽可能保留最多信息的方法。所谓,就是在说对于一个$n$数据集,其可以看做一个$n$维空间中的点集(或者向量集),而我们要把这个向量集投影到一个$k<n$维空间中,这样当然会导致信息损失,但是如果这个$k$维空间的基底选取的足够好,那么我们可以在投影过程中尽可能多地保留原数据集的信息。数据的目的在于使得数据更直观、更易读
作为目前很多研究领域的重要研究分支之一,其方法本身就多种多样,根据方法的不同,产生了很多基于的聚类方法,如Kohonen自组织特征映射(self-organizing feature map,SOFM) 、主成分分析(Principle component analysis,PCA) 、多维缩放(Multi-dimensional scaling ,MDS) 等。此外还有一种特殊的
转载 2023-07-27 22:20:30
255阅读
这里指的是维度为A*B*C*?的规整的数组。方法1:直接嫖numpy提供的接口import numpy as np a = np.zeros((3,3,0)).tolist() # 这样的话创建出的其实是3*3*?的数组,最后一是动态的 # 如果希望最后一是固定长度的话,把参数中的0替换成想要的长度也就可以了,这样的话是用0填充了方法2:手撸函数def high_dim_list(shap
转载 2023-06-03 22:52:27
140阅读
# UMAP对向量的应用及Python实现 在数据科学和机器学习领域,我们常常需要处理数据。然而,数据的处理和可视化往往非常困难。使用技术可以帮助我们减少数据维度,从而更清晰地理解数据。本文将介绍UMAP(Uniform Manifold Approximation and Projection)这一算法,并提供Python示例,帮助大家理解如何应用UMAP进行数据的
原创 10月前
545阅读
本文包括两部分,使用python实现PCA代码及使用sklearn库实现PCA,不涉及原理。总的来说,对n的数据进行PCA维达到k就是:对原始数据减均值进行归一化处理;求协方差矩阵;求协方差矩阵的特征值和对应的特征向量;选取特征值最大的k个值对应的特征向量;经过预处理后的数据乘以选择的特征向量,获得结果。 实验数据数据data.txt使用[2]中编写的数据,以下是部分数据截
转载 2023-08-10 11:37:47
229阅读
数据:定义:特征的数量减少特征选择:原因:1、冗余部分特征相关性,容易消耗计算机性能2、噪声:部分特征对预测结果有负影响工具:1、Filter(过滤式):VarianceThreshold   (sklearn.feature_selection.VarianceThreshold)2、Embedded(嵌入式):正则化、决策树3、Wrapper(包裹式)方差大小来考虑P
sklearn中的算法1. PCA与SVD sklearn中算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。在2006年,Netflix曾经举办了一个奖金为100万美元的推荐系统算
转载 2024-01-08 14:23:47
59阅读
# Python如何将数据 在数据科学中,数据是常见的现象,然而维度数据的处理却常常导致计算复杂度的增加、过拟合以及可视化的困难。因此,技术应运而生,成为处理数据的重要手段。本文将介绍一个具体的案例,使用Python应用主成分分析(PCA)的方法对数据进行,并提供详细的代码示例。 ### 问题背景 假设我们有一个客户数据集,包含多个特征(如性别、年龄、收
原创 10月前
297阅读
数据概述1.数据概述所谓的数据就是指采用某种映射方法,将原维空间中的数据点映射到低维度的空间中,可以解决大规模特征下的数据显示问题,使得数据集更易使用,降低后续算法的计算,消除噪声影响并使得结果更易理解。 数据的方法有很多,可从线性或非线性角度对其简单分类。 线性是指通过所得到的低数据能保持数据点之间的线性关系,主要包括主成分分析(Principal Compone
Python中T-SNE实现 from sklearn.manifold import TSNE from sklearn.datasets import load_iris from sklearn.decomposition import PCA import matplotlib.pyplot as plt iris = load_iris() X_tsne = TSNE(
转载 2023-05-30 19:50:27
106阅读
 作者:  郗晓琴  熊泽伟今天这篇文章是介绍目前前沿好用的一种可视化算法:t-SNE,并且附带python的实际例子加以讲解。t-SNE是什么技术我们直接开门见山好了,第一件事:什么是t-SNE?t-SNE的全称叫做t分布式随机邻居嵌入(t-SNE)。该算法是一种非监督的非线性技术,主要用于数据探索和可视化数据。简而言之,t-SNE为我们提供了数据
1 基于特征选择的维特征选择是在数据建模过程最常用的特征手段,简单粗暴,即映射函数直接将不重要的特征删除,不过这样会造成特征信息的丢失,不利于模型的精度。由于数据的Fenix以抓住主要影响因素为主,变量越少越有利于分析,因此特征选择常用于统计分析模型中。1.1特征选择的方法过滤法(Filter):按照发散性或者相关性对各个特征进行评分,通过设定阈值或者待选择阈值的个数来选择特征。包装法(Wr
网上关于各种算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。所谓,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d<
算法简介很多算法可以回归也可以分类算法PCA(主成分分析)LDA(线性判别分析)MDS(多维标度法)流形学习Isomap 简介很多算法可以回归也可以分类把连续值变为离散值:1.回归模型可以做分类:可以依据阀值(二元分类或多元分类)来分类2.逻辑回归二元分类,一个阀值。3.连续值进行分箱,实现多元分类4.把离散值变为连续值:插值法(1~2,在离散值之间插入足够密集的值)算法
转载 2023-09-19 07:01:06
165阅读
注: 在《SVD(异值分解)小结 》中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数。但是这里会利用到SVD的原理,如何大家还不明白它的原理,可以去看看《SVD(异值分解)小结 》,或者自行百度/google。1、SVD算法实现1.1 SVD原理简单回顾有一个\(m \times n\)
转载 2023-08-03 16:23:55
131阅读
主成分分析(Principal Component Analysis)Step 1:去相关(Decorrelation)Step 2: (Reduce Dimension)数据是文本时Step 1:去相关(Decorrelation)        旋转数据样本,使它们与坐标轴对齐,并且样本均值变为0。##########################
转载 2023-06-21 21:04:08
216阅读
深度学习巨头之一的Hinton大神在数据领域有一篇经典论文Visualizing Data using t-SNE。该方法是流形(非线性)数据的经典,从发表至今鲜有新的方法能全面超越。该方法相比PCA等线性方法能有效将数据投影到低维空间并保持严格的分割界面;缺点是计算复杂度大,一般推荐先线性然后再用tSNEpython sklearn有相应的实现。我现在用Tensorflow
使用sklearn库初次尝试PCA和T-SNE,原理还不太理解,写错了请一定指出,或者等我自己发现hhhh1. PCA首先读入sklearn里自带的鸢尾花数据库,并调用相关的包,再查看一下这些数据都是些啥:import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets impor
你遇到过特征超过1000个的数据集吗?超过5万个的呢?我遇到过。是一个非常具有挑战性的任务,尤其是当你不知道该从哪里开始的时候。拥有这么多变量既是一个恩惠——数据量越大,分析结果越可信;也是一种诅咒——你真的会感到一片茫然,无从下手。面对这么多特征,在微观层面分析每个变量显然不可行,因为这至少要几天甚至几个月,而这背后的时间成本是难以估计的。为此,我们需要一种更好的方法来处理数据,比如本文
一、Tensor的——torch.squeeze()函数1.tensor的维度小编对于张量的理解一直很模糊,今天用Excel来帮助大家理解,希望对大家有所帮助。首先,张量是多维数组,这里不多赘述,可以去查阅相关资料。今天重点介绍的是张量的度。张量有一、二、三、四等。一:正如我们的Eecel表里的3个数字就组成一数据。你也可以把它理解为一行数据,即由单个元素组成的一组数据。&nbs
转载 2023-08-25 07:24:24
255阅读
  • 1
  • 2
  • 3
  • 4
  • 5