1. 香农(Shannon entropy)信息(又叫香农)反映了一个系统的无序化(有序化)程度,一个系统越有序,信息就越低,反之就越高。如果一个随机变量 XX 的可能取值为 X={x1,x2,…,xn}X={x1,x2,…,xn},对应的概率为 p(X=xi)p(X=xi),则随机变量 XX 2. 相对(relative entrop
KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对(Relative Entropy)。它衡量的是相同事件空间里的两个
转载 2022-05-18 21:50:34
635阅读
香农信息量I:H§:交叉H(p,q)越小,p,q越相似。相对KL散度)其中p(xi)和q(xi)是两个概率分布,KL使用来计算两个信息之间的差值的。在判断预测是否准确的时候可以用预测值作为q(xi),p(xi)作为真实值。、交叉和相对关系...
原创 2023-03-09 07:46:54
452阅读
找了一些文章,感觉这篇是最好的,转载自:最好的解释链接KL散度常用于衡量两个概率分布之间的距离
转载 2023-07-11 00:00:26
127阅读
散度)KL 散度:衡量每个近似分布与真实分布之间匹配程度的方法:\[D_{K L}(p \| q)=\sum_{i=1}^{N} p\left(x_{i}\right) \log \left(\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}\right)\] 其中 q(x) 是近似分布,p(x) 是我们想要用 q(x) 匹配的真实分布。直观地说,这衡量
转载 2020-11-26 22:27:00
397阅读
2评论
1. 相对的认识   2. 相对的性质   3. 相
原创 2023-05-31 14:57:45
223阅读
:H(p)=−∑xp(x)logp(x) 交叉:H(p,q)=−∑xp(x)logq(x) 相对KL(p∥q)=−∑xp(x)logq(x)p(x) 相对(relative entropy)也叫 KL 散度(KL divergence); 用来度量两分布之间的不相似性(dissimilarity); 通过交叉的定义,连接三者: H(p,q)===−∑xp(x)logq(x)−
转载 2016-11-27 17:05:00
236阅读
一、第一种理解  相对(relative entropy)又称为KL散度(Kullback–Leib
转载 2021-11-30 13:43:00
1074阅读
# KL散度与交叉在PyTorch中的应用 在深度学习模型的训练中,我们常常需要衡量两个分布之间的差异,其中Kullback-Leibler (KL)散度和交叉是最常用的两种指标。本文将深入探讨这两者的定义、区别及其在PyTorch中的实现,并提供相应的代码示例。 ## 1. KL散度与交叉的定义 ### KL散度 KL散度是一种用于测量两个概率分布之间差异的非对称度量。给定两个概率
一、和互信息香农(Shannon entropy)用来对概率分布中不确定性总量进行量化: 也记作H(P)。换言之,一个分布的香农是指遵循这个分布的时间所产生的期望的信息总量。它给出了对依据概率分布P生成的符号进行编码所需的比特数在平均意义上的下界。哪些接近确定性的分布(输出几乎可以确定)...
老遇到交叉作为损失函数的情况,于是总结一下KL散度交叉KL散度(相对)中引出,KL散度(Kullback-Leibler Divergence)公式为: KL散度是衡量两个分布之间的差异大小的,KL散度大于等于0,并且越接近0说明p与q这两个分布越像,当且仅当p与q相等时KL散度取0.交叉在机器学习的分类问题中,常以交叉作为损失函数,此时同样可以衡量两个分...
原创 2023-01-18 00:48:13
323阅读
信息 信息量和信息的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作《A Mathematical Theory of Communication》中提出的。如今,这些概念不仅仅是通信领域中的基础概念,也被广泛的应用到了其他的领域中,比如机器学习。 信息量用来度量一个信息的
原创
2022-01-14 16:46:37
1709阅读
交叉交叉的原理为什么使用交叉引出交叉交叉的实际使用 交叉的原理为什么使用交叉当我们使用sigmoid函数作为激活函数,计算损失值时所用到的函数是二次代价函数(真实值减去与测试的平方),调整权值时的快慢与激活函数的导数有关. 当损失值较大的时候,应该调整的快一些, 当损失值较小的时候,可以调整的慢一些. 但是,使用二次代价函数,并不能实现这个功能.引出交叉因此改变计算损失值的代价函
相对(relative entropy)就是KL散度(Kullback–Leibler divergence),用于衡量两个概率分布之间的差异。 一句话总结的话:KL散度可以被用于计算代价,而在特定情况下最小化KL散度等价于最小化交叉。而交叉的运算更简单,所以用交叉来当做代价。 如何衡量两个
原创 2021-07-09 15:19:54
2380阅读
信息、交叉KL散度、JS散度、Wasserstein距离交叉(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉,发现自己对交叉的理解有些模糊,不够深入。遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记
自信息 自信息I表示概率空间中的单一事件或离散随机变量的值相关的信息量的量度。它用信息的单位表示,例如bit、nat或是hart,使用哪个单位取决于在计算中使用的对数的底。如下图: 对数以2为底,单位是比特(bit) 对数以e为底,单位是纳特(nat) 如英语有26个字母,假设在文章中出现的概率相等
转载 2020-04-22 15:53:00
1614阅读
2评论
全文共4351字,23幅图,预计阅读时间22分钟。本文被以下三份资料所启发,纯纯的致敬![Christopher Colah] -Visual Information The...
转载 2022-06-02 20:39:59
354阅读
整理:我不爱机器学习。
不难发现,交叉包含KL散度。
本文从两方面进行解释:数学和编码方面。总有一个角度能让你更好理解。数学解释Entropy用于计算一个离散随机变量的信息量。对于一个概率分布X,X的就是它的不确定性。用大白话来说,假设你预测一个东西,有时候结果会出乎意料,就表示出乎意料的程度。越大你越不容易预测对,事情就越容易出乎意料。离散型概率分布X的定义为自信息的平均值:H(X)=E_{p(x)}I(x)=\sum_{x}p(x)\
推荐 原创 2022-12-16 10:03:09
632阅读
1点赞
  • 1
  • 2
  • 3
  • 4
  • 5