证明:(p->q)^(q->p) <=> (¬pvq)^(¬qvp) // 蕴含律<=>( ¬p^(¬qvp)) v (q^(¬qvp)) // 分配率<=>(¬pq) v (¬p^p) v ((qq)v(q^p)) // 分配率<=>(¬pq) v F v (F v (q^p)) // 同一律<
原创 2022-07-07 16:07:23
802阅读
1 . Arima时序分析模型1.1 基础知识: 1.2 Arima模型原理:ARIMA模型是时间序列分析中应用最广泛的模型之一,ARIMA(p,d,q)由三个部分组成- AR(p):AR是autoregressive的缩写,表示自回归模型。含义是当前时间点的值等于过去若干个时间点的回归——因为不依赖与别的解释变量,只依赖于自己过去的历史值,故称为自回归;如果依赖过去最近的p个历史值,称
转载 2023-08-01 15:07:47
2608阅读
KL(q||p) 重视local的 big p(z), 不重视global,q(z)的z subspace 都对应p(z)的big probability m
原创 2023-06-29 10:03:58
62阅读
一. QQ图 分位数图示法(Quantile Quantile Plot,简称 Q-Q 图) 统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们的两个分位数放在一起比较。首先选好分位数间隔。图上的点(x,y)反映出其中一个第二个分布(y坐标)的分位数和与之对应的第一分
原创 2021-07-08 16:00:59
2124阅读
目录4. ARMA模型预测销量实践4.1. 统计分析包statsmodels4.2. 常用函数概述4.2.1. 绘制自相关、偏自相关图4.2.2. 白噪声检验4.2.3. 单位根检验4.2.3.1. 单位根如何确定数据是否平稳?4.2.4. 选定模型参数4.2.5. ARIMA模型函数4.2.5.1. 常用方法4.2.5.2. 常用属性/参数4.3. Python实践过程4.3.1. 时序数据平
# 如何实现“arimaresults python输出 p t q” ## 介绍 在时间序列分析中,ARIMA模型是一种常用的预测方法。当我们使用ARIMA模型进行建模后,我们通常会得到模型的参数p、d、q,分别代表自回归项、差分阶数和移动平均项。本文将向你介绍如何使用Python中的arimaresults库来输出ARIMA模型的参数p、d、q。 ## 流程图 ```mermaid jo
原创 2024-02-29 06:51:17
83阅读
在本文中,我们会研究一些用于数据科学任务的 Python 库,而不是常见的比如panda、scikit-learn 和 matplotlib 等的库。尽管像panda 和 scikit-learn这样的库,是在机器学习任务中经常出现的,但是了解这个领域中的其它 Python 产品总是很有好处的。Wget从网络上提取数据是数据科学家的重要任务之一。Wget是一个免费的实用程序,可以用于
转载 2024-08-31 20:23:38
16阅读
这学期有一节时间序列课。一周一学期大法学完了之后,只是用python一步一步做下来的话,好像也没有那么那么那么难。但是,其实好多东西都没太懂,能确定会了的,就只有写似然函数和无脑调用程序包。连python有几种数据结构都不知道,遇到报错的解决方法就是慢慢试,总会试出来的。所以,回想写作业的时候到处搜代码没得结果的悲惨心路历程,决定把复feng习kuang时yu候xi敲的代码发一下。以后万一有来知乎
# ARIMA模型的Python输出 p d q ## 什么是ARIMA模型? ARIMA模型是一种用于时间序列预测的经典统计方法,它能够有效地捕捉数据中的趋势和季节性变动。ARIMA模型由自回归(AR)、差分(I)和移动平均(MA)三部分组成,分别用p、d、q三个参数表示。 - p:自回归项的阶数,表示模型中考虑的历史观测值的数量。 - d:时间序列进行差分的次数,用于使数据稳定。 - q
原创 2024-02-24 04:26:59
90阅读
# Python计算条件熵:概念与实例 在信息论中,熵是度量信息量的一种方法,条件熵则是用于量化在已知某一事件(如随机变量P)条件下另一个事件(如随机变量Q)的不确定性。本文将介绍条件熵的概念,并提供使用Python进行条件熵计算的代码示例。 ## 条件熵的定义 条件熵\(H(Q|P)\)定义为给定事件P的情况下事件Q的不确定性。数学表达式为: \[ H(Q|P) = -\sum_{p \
# ARIMA模型的Python实现 ## 简介 ARIMA(自回归滑动平均模型)是一种常用的时间序列分析方法,用于预测未来的数据值。ARIMA模型可以通过拟合历史数据来捕捉数据中的趋势、季节性和周期性。 ARIMA模型由三个参数组成:p、d和q。其中,p表示自回归项的阶数,d表示差分的次数,q表示滑动平均项的阶数。在确定这些参数时,可以使用多种方法,如观察自相关图(ACF)和偏自相关图(P
原创 2023-08-18 12:33:25
334阅读
# 使用 Python 进行 ARMA 模型时间序列分析 时间序列分析是数据科学领域的一个重要分支,涉及到在时间维度上分析数据。在众多的时间序列模型中,自回归滑动平均模型(ARMA 模型)因其简单和有效而广泛应用。本文将通过 Python 语言介绍 ARMA 模型的基本原理,并提供代码示例,帮助大家更好地理解和应用这一模型。 ## 什么是 ARMA 模型? ARMA 模型由两个部分构成:自回
原创 9月前
60阅读
Python学习笔记第四十五天NumPy 统计函数numpy.amin() 和 numpy.amax()numpy.ptp()numpy.percentile()numpy.median()numpy.mean()numpy.average()标准差方差结束语 NumPy 统计函数NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。 函数说明如下:numpy
转载 2023-09-28 09:54:26
9阅读
原理请查阅相关图书本文建立于Anaconda  可能部分代码不适用于IDLE编译器需要轻微改动首先应导入所需要的第三方库。import pandas as pd import matplotlib.pyplot as plt from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsapl
本章是对应用系统负载和磁盘容量进行分析和预测,涉及到的数据为时间序列数据,因此最后是用ARMA模型去拟合。 本文主要包含以下部分:ARMA模型平稳性检验白噪声检验Python实战总结ARMA模型关于ARMA模型,具体可看时间序列中的ARMA模型和ARMA百度百科。 本文摘录其主要部分:模型基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据
# 实现“Android PQ”的教程 ## 流程步骤 通过以下表格展示整个过程的步骤: | 步骤 | 内容 | | ---- | ---- | | 1 | 下载并安装Android Studio | | 2 | 创建一个新的Android项目 | | 3 | 更新项目的build.gradle文件 | | 4 | 添加必要的依赖库 | | 5 | 修改项目的minSdkVersion
原创 2024-02-18 07:12:45
33阅读
# Docker中的Ctrl + P + Q操作实现 ## 引言 Docker是一种常用的容器化技术,可以用于快速构建、部署和运行应用程序。在使用Docker时,经常会遇到需要退出Docker容器但保持容器的运行状态的情况。这时,可以使用Ctrl + P + Q操作来实现。本文将向你展示如何使用这一操作。 ## 操作流程 下面是使用Ctrl + P + Q操作的步骤: ```mermaid
原创 2023-11-30 10:14:09
345阅读
arpa库是用于读取arpa数据文件的python包,由于涉及领域很小,截至本文发布,笔者尚未搜索到有关详尽的教程,因此初次接触arpa数据文件后,没有意识到数据格式问题,单纯通过统计分析得到了一些规律特征,希望能转为常见的csv格式数据文件方便使用,直到发现该包后解析源码得到了简洁的用法,供遇到同样问题朋友以参考。arpa 数据文件格式arpa数据文件是典型的用于存储n-grams模型参数的文件
转载 2023-10-20 17:12:47
53阅读
# Python中的ARIMA模型:q、d、p的确定 在时间序列分析中,ARIMA(自回归积分滑动平均)模型是一个非常重要的工具。它广泛应用于经济学、气象预测、金融分析等领域。ARIMA模型由三个参数构成:p、d、q。本文将详细介绍这三个参数的含义以及如何在Python中使用它们来构建ARIMA模型,并通过代码示例进行说明。 ## ARIMA模型参数概述 - **p(自回归项)**:表示模型
原创 2024-10-20 06:54:30
323阅读
# 使用Python自动确定ARIMA模型中的pq参数 在时间序列分析中,ARIMA(自回归积分滑动平均)模型是一种广泛应用的方法。有效地选择模型的参数p(自回归项数)和q(滑动平均项数)是建立ARIMA模型的关键。然而,手动确定这些参数可能非常繁琐,幸运的是,Python为我们提供了一些工具来自动选择最优参数。 ## ARIMA模型参数概述 * **p**:自回归项数,表示模型使用的过去
原创 2024-09-13 05:34:12
297阅读
1点赞
  • 1
  • 2
  • 3
  • 4
  • 5