Windows下在pycharm中的tensorflow和cuda安装教程需要安装的软件:1、CUDA Toolkit: CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。(只有安装cuda才能让显卡支持tensorflow的运行) 2、cuDNN:是NVIDIA打造
转载
2024-05-06 20:45:12
187阅读
# 使用GPU加速Python计算的方案
在现代计算中,GPU(图形处理单元)以其强大的并行计算能力被广泛应用于各种科学计算和深度学习任务。相较于传统的CPU,GPU能够处理更多的并行任务,提高计算效率。本文将通过一个具体的机器学习问题,展示如何使用GPU加速Python程序。
## 问题背景
我们希望通过使用GPU来加速对MNIST手写数字数据集的分类任务。MNIST数据集包含70,000
用了很久的spyder,一直有一些问题,体验感不是很好:1.自动提示功能不齐全,有时甚至失效2.不能直接本地代码同步到服务器(网上介绍的一种方法我尝试失败....)3.要使用远程服务器的GPU,本地的代码通过xshell上传到服务器之后还要修改一些文件路径(数据),操作太麻烦网上了解了一下,发现pycharm在与服务器同步的功能上比较强大,决定弃用spyder了。自己摸索了很久,终于是成功了,决定
转载
2023-11-29 20:01:18
49阅读
记录:如何跑起来别人开发的django项目第一步:pycharm换成专业版,专业版才支持django 在pycharm专业版中,设置django的环境,设置服务器的一些参数配置,见文第二步: 一键安装requirements.txt里的依赖包 : pip install -r requirements.txt如何生成项目的requirements.txt的请参考博文 第三步:启动项目 直接点击py
转载
2024-04-29 12:53:19
46阅读
Ubuntu18.04.2使用GPU跑程序最简单的方法!安装CUDA9.0 以及CUDNN7.1还有Tensorflow 对应GPU版本亲测有效!注意!别的系统不一定适用但大部分流程相同今年考了研究生,研究课题需要跑网络,代码以及数据都准备好,用我自己的CPU跑了一下,7个小时才跑完一边!我的笔记本是某想G50,14年本科大一时候买的,现在已经不堪入目了,好在导师有独显GPU,就让我使用,但是装了
转载
2023-11-02 11:00:31
230阅读
Tensorflow环境下的深度学习框架的配置主要包含以下几步:0、前言1、PyCharm的安装步骤:2、Python的安装步骤:3、AnaConda的安装步骤:4、CUDA的安装步骤:5、cuDNN安装步骤:6、Tensorflow—GPU配置步骤:7、在PyCharm中使用Tensorflow 0、前言我们需要安装的内容如下:Windows10 操作系统
Pycharm :python的开发
转载
2024-05-07 10:41:10
586阅读
在仿真的时候添加适当的物理场,在系统中添加载荷及约束。添加物理场这里添加的都是单接口的物理场。 这是一个支架热应力分析教学案例。 我们需要定义一个热物理场(这个定义过程通用)添加物理场确定你的模型应用于哪个物理领域。如果你选择创建模型向导来创建模型的时候,这一步已经在选择物理场中选择完了 如果是创建空模型进入的,在点击添加物理场后,从右侧选择你要添加的场。 添加后就可以在左侧功能树下见到,一个物理
转载
2024-09-05 12:17:26
796阅读
文章目录1、k近邻分类2、sklearn中的k近邻函数2.1、KNeighborsClassifier2.2、fit2.3、predict3、收集和预处理数据4、训练和测试 手写识别是不是很高大上?但是,只要你想学,还是对你很友好的。 Python大法好啊,Python中有好几种机器学习通用库,提供了类似于STL那样的算法模板函数。由于Python函数参数传递的特殊用法,它们还支持手动调参。目
机器学习模型训练之GPU使用1.电脑自带GPU2.kaggle之免费GPU3.amazon SageMaker Studio Lab 免费GPU使用推荐 深度学习框架由大量神经元组成,它们的计算大多是矩阵运算,这类运算在计算时涉及的数据量较大,但运算形式往往只有加法和乘法,比较简单。我们计算机中的CPU可以支持复杂的逻辑运算,但是CPU的核心数往往较少,运行矩阵运算需要较长的时间,不适合进行深
转载
2024-02-28 14:51:34
710阅读
# 使用 GPU 加速 Python 计算:解决一个实际问题
在当今的计算密集型应用场景中,深度学习、图像处理和大数据分析等任务对计算性能的要求越来越高。传统的 CPU 在处理复杂的数学运算时,往往存在性能瓶颈。与此相比,GPU (图形处理单元) 由于其并行计算的能力,成为了加速计算的重要选择。
本文将演示如何利用 GPU 来加速 Python 中的计算,并通过一个实际的示例来解决一个常见问题
目录前言一、前期准备工作(1)Anaconda的下载(2)PyCharm的下载(3)Github代码下载(4)数据下载二、配置环境(1)环境文件(2)查看训练结果和损失函数(3)在PyCharm中运行与修改三、结果展示 前言本文创作来源于B站上的一个搭建深度学习环境视频,我将从零开始教大家搭建一个基础的深度学习案例环境以及解答本人在搭建时遇到的一系列问题。本文将以Github上的Pix2Pix为
win10使用tensorflow和tensorflow-gpu时踩过的坑最初要使用tensorflow-gpu是因为要使用inception-resnet-v2,这个模型在cpu上跑,速度实在是太慢,两天跑1000个batch的样子,实在难受。于是搬出了我四年前的电脑(NIVIDA 840M)来准备用GPU跑。遇到了一些坑,一一解决了,记录一下。first最开始的时候,以为安装了tensorfl
转载
2024-04-03 08:53:05
138阅读
0. 介绍之前的博客中简单讲到了gprmax3.0安装使用过程中的一些问题(点此进入),pycharm运行gprmax能避免cmd操作中反复复制粘贴的过程,便于模拟,对仿真数据量较大时特别有用,尤其是机器学习、深度学习所需大量数据的仿真,这篇博客主要介绍如何在pycharm中配置gprmax以及其使用方法欢迎交流:1593458764@.com特别说明:由于本人最近闲暇时间太少,不再提供免费安
转载
2024-03-15 11:31:53
548阅读
笔者笔记本双硬盘:128G+1T。4G内存。一、准备工作1、下载镜像文件,也不多说。可以提供一个网址:http://releases.ubuntu.com/14.04.5/ 。一般下载桌面版。2、软碟通制作U盘启动盘。这里就不多说。详细步骤见链接:https://cn.ultraiso.net/jiaocheng/ke-lu-guang-pan.html 。PS:下载安装完后打开,点击免费试用就好
最近一直在安装 TensorFlow, 因为一直切换到 Ubuntu 系统比较麻烦,所以就尝试在Windows 系统上进行安装,发现下面这种方法进行安装十分方便。现在记录在这里。1. 可选如果想要安装GPU 版本,继续阅读,如果只想安装CPU 版本,可以跳过这部分a. 安装 CUDA ,根据自己的系统进行安装即可,版本可以从官网进行下载,也可以点击CUDA百度网盘下载, win10系统推荐下载cu
Anaconda + PyCharm + PyTorch(GPU) + 虚拟环境声明一、安装 Anaconda二、安装 PyCharm三、创建 虚拟环境 并 安装 PyTorch四、关联 虚拟环境五、致谢 声明感谢 姜小敏 同学对我的支持、鼓励和鞭策!一、安装 Anaconda进入 Anaconda 下载界面 ,单击 Download 下载。下载好之后,进行 安装 。安装路径 全英文 。不勾选
转载
2024-04-26 15:19:43
849阅读
在数据科学和深度学习的领域,使用GPU来加速机器学习模型的训练和推理已成为一种常见的做法。由于GPU在并行处理方面的优势,它能够显著提高模型训练的效率,尤其是在处理大量数据时。本文将通过详细的步骤和示例,从多个角度分析并解决“怎么用GPU跑机器学习”的问题。
### 问题背景
随着数据量的不断增加,机器学习模型的训练时间也随之增大。使用传统的CPU训练,往往需要耗费数小时甚至数天的时间,无法满
1.创建实例恒源云提供的GPU很多,从单卡到多卡价格不等,经常有特惠价格:这里考虑性价比,以A5000单卡为例:购买时候我选择的镜像是Pytorch1.8版本,购买实例后,实例就启动了2.Pycharm远程连接GPU2.1配置远程文件连接个人习惯是在本地Pycharm上编写代码,然后使用云GPU运行代码。注意哦,只有Professional版本才支持远程开发功能。打开Pycharm,工具->
1 前言原料:我有两台电脑,一台是Win10系统的小米笔记本12.5(简称为A电脑),一台是Ubuntu系统的小米游戏本(简称为B电脑)。A电脑没有GPU,没有配置任何深度学习环境;而B电脑的GPU是GTX 1060,配置好了深度学习环境,已经能用CUDA跑代码了。A电脑和B电脑使用的IDE都是VS Code。需求:代码调试:因为B电脑有GPU,我希望能够用A电脑调试B电脑的代码。场景1(远程调试
转载
2024-03-27 10:20:35
314阅读
记录一些自己用的(可能会忘的),(并不全面)只是给自己看的。1. 如何打开点击lunch即可或者通过命令行,输入jupyter notebook或者是jupyter-notebook都可以2. 更换环境(1)打开命令行,切换到需要的环境,输入conda install jupyter notebook 之后再输入jupyter notebook即可之后再选择环境即可 也可以在(
转载
2024-05-29 15:02:55
558阅读