机器学习的主要领域之一是无监督学习领域。主要思想是在我们的数据中找到一种模式,而不需要像监督学习那样的标签的先验知识。它通常通过将我们的数据成组并尝试从中推断出意义来实现。一种比较流行的算法是K均值算法(以及熟悉的EM算法)。在这个算法中,我们在迭代过程中调整K个质心来找到我们的clusters。听起来不错吧?但主要问题是:1)它假设数据的形状(圆球,径向基)。2)有时需要多次重启才能找到
文章目录一、前言二、基本原理(一) 无向权重图1、 邻接矩阵 W2、 度 D(二)相似矩阵/邻接矩阵 W1、ϵ-邻近法2、K邻近法3、全连接法(三)拉普拉斯矩阵(2) 拉普拉斯矩阵的性质(四) 无向图切图1、 子图与子图的连接权重2、 切图的目标函数(五) 切图1、 RatioCut切图2、 Ncut切图三、算法流程四、python实现五、sklearn库中的使用六、算法
转载 2023-12-06 16:28:20
408阅读
      本文将对的知识进行一些总结。目的在于记录自己的学习经历,当作自己的笔记来写。写得不好的地方欢迎交流指正。是一种非常流行的算法,它不需要对簇的类型有很强的假设,可以任何形状的数据。一、简要介绍      由于网上有许多的关于的介绍,所以我这里只是简要介绍一下是一种对数据分析非常有用的工具,它
算法是目前最流行的算法之一,其性能及适用场景优于传统的算法如k-均值算法,本文对算法进行了详细总结,内容主要参考论文《A Tutorial on Spectral Clustering》,下载链接:https://github.com/zhangleiszu/machineLearning,若对算法有不理解的地方,欢迎交流。目录1. 模型的优化思想2. 图的表示方法
广义上来说,任何在算法中用到SVD/特征值分解的,都叫Spectral Algorithm。顺便说一下,对于任意矩阵只存在奇异值分解,不存在特征值分解。对于正定的对称矩阵,奇异值就是特征值,奇异向量就是特征向量。传统的算法,如K-Means、EM算法都是建立在凸球形样本空间上,当样本空间不为凸时,算法会陷入局部最优,最终结果受初始参数的选择影响比较大。而可以在任意形状的样本空间
转载 2023-08-21 15:36:30
190阅读
在之前的文章里,介绍了比较传统的K-Means、Affinity Propagation(AP)、比K-Means更快的Mini Batch K-Means以及混合高斯模型Gaussian Mixture Model(GMM)等算法,今天介绍一个比较近代的一算法——Spectral Clustering 中文通常称为“”。Spectral Clustering(,有时
算法(Spectral Clustering)算法原理:###1.是广泛使用的算法,比起传统的K-means算法,算法对数据分布的适用性更强,效果也很优秀,计算量小,实现起来也不复杂。 具体原理 2.是从图论中演化出来的算法,后来在中得到广泛的应用。主要思想是把所有的数据看作空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,反之,
是一种强大的无监督学习算法,广泛应用于图像分割、社交网络分析以及生物信息学等领域。通过构建数据之间的相似度矩阵,利用图论中的概念来有效识别数据的结构。本文将将的Python实现逐步进行详细阐述,涵盖背景描述、技术原理、架构解析、源码分析、性能优化和扩展讨论等方面。 ### 背景描述 的概念可以追溯到1990年代。随着数据量的迅速增长,传统方法在高维空间中的效果逐渐
原创 6月前
28阅读
SpectralClustering() 是在样本之间进行关联矩阵的低维度嵌入,然后在低维空间中使用 KMeans 算法。 如果关联矩阵稀疏并且 pyamg 模块已经被安装,则这是非常有效的。 需要指定簇的数量。这个算法适用于簇数量少时,在簇数量多时是不建议使用。对于两个簇,它解决了相似图形上的 归一化切割(normalised cuts)的凸松弛问题:
原创 2022-11-02 09:42:23
167阅读
小白入门算法原理与实现小白入门算法原理与实现1. 是什么?2.步骤2.1 构图2.2 切图2.2.1RatioCut2.2.2Ncut3实现 小白入门算法原理与实现文章结构主要分为下面三个部分 ①是什么 ②怎么进行应用例子1. 是什么?首先回顾一下的概念::对大量未知标注的数据集,按数据的内在相似性将数据集划
# Java ## 引言 在数据分析和机器学习领域,是一种常用的算法。它在图论和线性代数的基础上,将数据集表示成图的形式,并通过图的关联性来进行Java作为一种流行的编程语言,也提供了丰富的工具和库来实现算法。本文将介绍Java中的算法,并提供具体的代码示例。 ## 什么是是一种基于图论的算法,它将数据集表示为一个图,然后通过对图的
原创 2023-12-20 12:24:46
49阅读
# 利用 Java 实现算法 是一种基于图论和线性代数的方法,它通过对样本间的相似度进行建模,利用拉普拉斯矩阵进行降维,然后使用传统的算法进行。在本教程中,我们将逐步实现算法,并在这个过程中学习相关的 Java 编程。 ## 流程概述 下面的表格展示了实现算法的主要步骤: | 步骤 | 描述 |
原创 10月前
53阅读
1. 给你博客园上若干个博客,让你将它们分成K,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——的直观解释是根据样本间相似度,将它们分成不同组。的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将问题转为图分割问题:找到一种...
转载 2013-11-11 17:39:00
183阅读
2评论
本文对这几种算法进行统一分析和归纳。1. PCA与Kmeans降维–主成分分析(PCA)–第4.1节2. 与Kmeans–第5节kmeans假设数据服从高斯分布,所以对于非高斯分布的数据性能表现可能不好,这个时候我们可以利用核方法扩展,得到kernel kmeans,相当于把原始d维数据投影到一个高维核空间中再进行kmeans。本质上,也是干了这么一件事儿,相似度矩阵W
是基于矩阵SVD分解的一种方法,就矩阵分解而言,并没有什么新奇的,但是利用矩阵分解来解决问题的思路值得研究一下 解决的问题 实现图的最佳分割 优化目标切割目标,切割成本最小,分割后的数据规模差不多大。通俗的说,就是集群内部,节点联系尽量紧密,群集外部连接越少。 解决过程步骤一建立拉普拉斯矩阵(度矩阵-连接矩阵)这个矩阵第一个巧妙之处在于它的最小特征向量,这样后面的特征向量因为
原文地址如果说 K-means 和 GMM 这些的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以算
转载 2023-07-11 14:09:12
81阅读
#进行SpectralClustering #查看默认的效果 y_pred = SpectralClustering().fit_predict(cluster_data) print("Calinski-Harabasz Score", metrics.calinski_harabaz_score(cluster_data, y_pred))#默认使用的是高斯核,需要对n_cluster
转载 2023-06-21 21:49:46
218阅读
是一种基于图论的方法,通过对样本数据的拉普拉斯矩阵的特征向量进行,从而达到对样本数据的母的。可以理解为将高维空间的数据映射到低维,然后在低维空间用其它算法(如KMeans,c-均值)进行。相似图构造相似图,用来刻画数据点局部的近邻关系。顶点对应一个样本点。k-近邻图 如果是的近邻,那么和之间存在一条边。由于每个样本点的近邻情况不完全相同,因此这种方法构造的
转载 2024-03-17 10:05:48
150阅读
Clustering 上文我们引入了是,并介绍了第一种算法K-means。今天,我们来介绍一种流行的算法——(Spectral Clustering),它的实现简单,而且效果往往好于传统的算法,如k-means,但是其背后的原理涉及了很多重要而复杂的知识,如图论,矩阵分析等。别担心,今天小编就带你一举攻克这些难关,拿下算法。 Q:什么是?A:
转载 2023-07-28 15:44:17
121阅读
这方法是昨天听同学提起的,大致翻看了几篇博客跟论文,这里写下自己的理解从样本相似性到图根据我们一般的理解,是将相似的样本归为一,或者说使得同类样本相似度尽量高,异类样本相似性尽量低。无论如何,我们需要一个方式度量样本间的相似性。常用的方式就是引入各种度量,如欧氏距离、余弦相似度、高斯度量等等。度量的选择提现了你对样本或者业务的理解。比如说如果你要比较两个用户对音乐选择的品味,考虑到有些用户习
  • 1
  • 2
  • 3
  • 4
  • 5