预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特定任务
预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理
预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特
随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。LoRA (Learned Representations for Finetuning)L
原创
2023-12-21 15:13:36
731阅读
随着自然语言处理(NLP)技术的不断发展,大模型微调(finetune)方法成为了提高模型性能的关键手段。本文将对LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning等主流微调方法进行总结,帮助读者更好地理解和应用这些技术。
原创
2024-05-09 10:03:44
345阅读
这一章我们介绍在下游任务微调中固定LM参数,只微调Prompt的相关模型。这类模型的优势很直观就是微调的参数量小,能大幅降低LLM的微
原创
2024-08-09 15:10:54
166阅读
论文解读:P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks P-tuning等方法的提出,避免了人工构建离散的template,而让模型可以自动学习continuous embedding,然而P-tuning在一些复杂的自然语言理解(Natural Lan
原创
2022-12-22 03:19:56
3256阅读
随着深度学习技术的不断发展,大模型在自然语言处理(NLU)领域的应用越来越广泛。然而,大模型的训练和微调往往需要大量的计算资源和时间,这给实际应用带来了很大的挑战。P-tuning v2作为一种有效的微调方法,对于大模型也表现出了良好的性能。本文将深入解析P-tuning v2为什么对大模型有效。一、P-tuning v2的基本原理P-tuning v2是一种基于预训练模型的微调方法,其基本原理是
原创
2023-12-21 15:17:27
344阅读
预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特定任务时可能无
在 Prompt Tuning 中,连续提示仅插入到 Transformer 的第一层输入嵌入序列中,而在接下来的Transformer层中,连续提
原创
精选
2023-12-23 23:06:15
2493阅读
预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等]
原创
2024-06-17 16:31:43
680阅读
各种微调方法适用于不同的场景和任务。SFT监督微调适用于快速适应目标任务,LoRA适用于减少参数量和成本,P-tuning v2适用于多任务学习,而Freeze适用于提取特定层次的特征。
原创
2023-10-12 11:47:27
343阅读
随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革,而大语言模型(Large Language Model, LLM)作为这一变革的核心驱动力,正逐步成为连接人类语言与机器智能的桥梁。LLM通过海量文本数据的学习,掌握了丰富的语言知识、上下文理解能力以及生成高质量文本的能力,为智能教学、智能客服、虚拟助手等多个领域的应用提供了强大的技术支持和无限可能。将OpenVINO™
原创
精选
2024-09-02 22:16:18
301阅读
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,
oracle 是经过多年研发的, 通用的, 质量很高, 而application 是为客户定制的, 一次性的, 质量可能会出问题.数据库的 move 的含义, 是将老表copy到新的表, 然后将新表命名为老表的名字.为什么要move呢, 可能是表的物理结构有问题, 有很多碎片化. 或者是 PCTFR...
转载
2014-04-05 16:37:00
169阅读
2评论
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法
原创
2023-07-16 22:40:30
1051阅读
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法
原创
精选
2024-04-25 10:48:53
528阅读
SFT监督微调时监督微调时,学习率通常会设置得很小常见误区:1.监督微调需要大量的训练时间和数据 2.监督微
原创
2024-08-19 11:41:58
89阅读