#include#include#define ll long longll mod;bool Judge(int x){ for(int i=2;i0) { if(n&1) { ans*=ret; ans%=mod; } ret=(ret*ret)%mod; n>>=1; } return ans;}int main(){ int p,a; while(scanf("%d %d",&p,&a)!=EOF) { if(p==0...
转载 2013-09-26 16:21:00
105阅读
HPU专题训练(-1)GCD&&素筛&&快速幂_____K - Pseudoprime numbers题目来源http://poj.org/problem?id=3641第一次做的时候用的是int 没有用long long 范围比较小,出错了而且英文题目,还扯了费马小定理,百度了一下,但是也没用到写两个函数就行了,快速幂,素数判断/*...
原创 2022-10-18 16:46:41
35阅读
Pseudoprime numbersTime Limit: 1000MSMemory Limit: 65536KTotal Submissions: 4864Accepted: 1872DescriptionFermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not ve
IT
原创 2021-07-29 16:17:46
118阅读
ed: 5367 DescriptionFermat's theorem states that for a...
原创 2023-02-07 12:13:36
69阅读
题 Description Jerry is caught by Tom. He was penned up in one room with a door, which only can be opened by its code. The code is the answer of the su
原创 2021-07-22 14:02:31
137阅读
#include <iostream> //二分using namespace std;__int64 p;bool prime(__int64 n){ for(__int64 i=2;i*i<=n;++i) if(n%i==0) return false; return true;}__int64 query(__int64 a,__int64 n){ if(n==1) return a; __int64 q=query(a,n/2),t=(q*q)%p; if(n%2==0) return t; else return (t*a)%p;}int main(){ __int
转载 2011-07-22 20:19:00
27阅读
2评论
#include<iostream> #include<stdio.h>#include<cmath>using namespace std;int is_prime(int x){ int m=floor(sqrt((double)x)+0.5); for(int i=2;i<=m;++i) if(x%i==0) return 0; return 1;}int power(int a,int b,int m) //快速幂取模计算 (a^b)%m{ if(a==0) return 0; else if(...
转载 2011-07-05 02:00:00
26阅读
【解题思路】这是一道不错的数论题目,可以学到很多东西,比如说将指数很大的数进行二进制处理,还有就是判断素数和伪素数。最有用的知识点是:1、如果p是奇数,则有(a.^p)mod(m)==((a%m)*(a.^(p-1)%m)%m成立;2、如果p是偶数,则有a.^p==a.^(p/2)*a.^(p/2)。也许可以说这两个结论人人都知道,但用起来就不是那么一回事了。#
原创 2022-08-05 15:48:11
27阅读
Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4891 Description Fermat's theorem states that for any prime number p and for any integer a &gt
原创 2021-08-31 10:43:34
30阅读
题意:a的p次方p取模等于a,且p不是素数,就输出yes;#include<iostream>#include<cstdio>#include<algorithm>#include<cmath>#include<cstring>#define ll long longusing namespace std;ll powermod(ll a
原创 2022-10-19 16:13:14
22阅读
Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4891 Description Fermat's theorem states that for any prime number p and for any integer a &g
原创 2021-08-31 10:43:33
51阅读
DescriptionFermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and ...
转载 2015-11-09 20:41:00
34阅读
Fermat's theorem states
原创 2023-05-18 14:19:07
25阅读
Description:Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but ...
原创 2023-05-09 10:03:19
57阅读
题目链接:http://poj.org/problem?id=3641 题目大意:给定a,p,判断一个数是不是伪素数(伪素数是指p---p满足a^p = a (mod p)但p本身不是素数),2>= 1; } return ret; } POJ 3641代码:#i...
转载 2013-01-12 21:24:00
24阅读
2评论
快速幂:快速幂就是所求的幂次方过大,导致代码所用的时间超限。如:求2^3,3的二进制是11,(n&1)判断次方数的二进制是否为1,n>>1,向右进位1:代码:k=1,t=n;while(n) { if(n&1)//判断n的最后一位二进制不为0 { k=k*m; } n=n>>1; m=m*m; }题目描述:Ferm...
原创 2023-02-14 16:21:18
80阅读
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit Status Description Fermat's theorem states that for any prime number p and for any integer a > 1, a
原创 2022-08-24 11:39:10
30阅读
http://poj.org/problem?id=3641注意计算前先 a%=p 一下。/*16ms,384KB*/#includelong long qmod(long long a, long long n, long long b){ long long ans = 1; while (n) { if (n & 1) { ans = (ans
原创 2023-04-12 03:25:50
116阅读
DescriptionFermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but
原创 2022-05-27 17:11:05
44阅读
题目大意:费马
原创 2014-09-23 06:51:17
45阅读
  • 1
  • 2
  • 3
  • 4
  • 5