llhthinker-Apriori算法介绍(Python实现)一、Apriori算法简介Apriori算法是经典的挖掘频繁项集和关联规则的数据挖掘算法。A priori在拉丁语中指"来自以前"。当定义问题时,通常会使用先验知识或者假设,这被称作"一个先验"(a priori)。Apriori算法的名字正是基于这样的事实:算法使用频繁项集性质的先验性质,即频繁项集的所有非空子集也一定是频繁的(这也            
                
         
            
            
            
            @property作用:python的@property是python的一种装饰器,是用来修饰方法的。我们可以使用@property装饰器来创建只读属性,@property装饰器会将方法转换为相同名称的只读属性,可以与所定义的属性配合使用,这样可以防止属性被修改。1.修饰方法,让方法可以像属性一样访问。class DataSet(object):
@property
def method_with            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-14 17:09:45
                            
                                71阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            ROI---设定感兴趣的区域(region of interest)定义:Mat imageROI;  
//方法一:通过Rect指定矩形区域 
imageROI=image(Rect(500,250,logo.cols,logo.rows))
//方法二  指定感兴趣行或列的范围(Range)
imageROI=srcImage3(Range(250,250+logoImage.rows),Ra            
                
         
            
            
            
            A*算法学习  A*算法伪代码  步骤一: 创建地图。 解释:A*算法中的地图多以栅格图法构建,在代码中可以用数组或者说列表来实现,一般采用二维数组索引表示每个节点的坐标,索引内容 0代表地图可通过,1代表地图中的障碍物。  步骤二: 设定起始点,以及目标点即终点。将起始点添加进开放列表中(openlist),此过程可以视为初始化。 解释:  openlist是一个存放待检测节点的列表,列表中是            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-19 17:15:15
                            
                                43阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            本篇分为三个部分:一、算法背景啤酒与尿布故事:某超市为增加销售量,提取出了他们超市所有的销售记录进行分析。在对这些小票数据进行分析时,发现男性顾客在购买婴儿尿片时,通常会顺便搭配带打啤酒来犒劳自己,于是超市就想如果把这两种平时看不出有关联的商品摆在一起,是不是能方便顾客同时提升商品的销量。于是尝试将啤酒和尿布摆在一起的上柜策略,最后果然两样商品的销量双双提升。聪明的现代店家(甩饼)故事:甩饼是20            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-03-06 21:16:54
                            
                                41阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            纸上得来终觉浅,仅仅懂了原理还不够,要用代码实践才是王道,今天小编就附上小编自己在学习中实践的KNN算法。KNN算法伪代码:对未知类别属性的数据集中的每个点一次执行以下操作:(1)计算已知类别数据集中的点与当前点之间的距离;(2)按照距离递增次序排序;(3)选取与当前点距离最小的k个点;(4)确定前k个点所在类别出现的频率(5)返回前k个点出现频率最高的类别作为当前点的预测分类;Python代码如            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-18 18:58:57
                            
                                0阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录冒泡排序冒泡排序图解选择排序选择排序的基本思想选择排序图解插入排序插入排序的基本思想插入排序图解希尔排序希尔排序法基本思想希尔排序示意图交换法移位法快速排序快速排序介绍快速排序法示意图以中间值为基准以数组中第一位数字为基准归并排序归并排序图解基数排序基数排序基本思想基数排序的图文说明各算法时间复杂度统计图 冒泡排序基本介绍:            
                
         
            
            
            
            斐波那锲数列def fib(num):
    a = 0
    b = 1
    n = 0
    while n < num:
        a, b = b , a + b
        yield a
        n += 1
    print('done')
for i in fib(9):
    print(i)
print(fib(9))杨辉三角def tr            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-06-21 22:26:05
                            
                                82阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            A*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下维基百科给的算法解释:https://en.wikipedia.org/wiki/A*_search_algorithmA *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题。 ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径。它是根据加权            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-06-29 11:52:31
                            
                                108阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            前言关于A*算法的实现是很早之前的一次开发中的成果,并做了一些改进。当然,在这里就不记录改进部分了,因为其中还有一些争议。这里仅是对A*算法的理解和使用Python实现。参考链接之所以放在前面,是因为这些链接的参考价值特别高,如果希望获得更多的了解,可以通过以下链接进行学习。时间线2021.03.25 优化2021.11.03权重优化定义(百度百科)A*(A-Star)算法是一种静态路网中求解最短            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-29 17:17:38
                            
                                138阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            A*算法,A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快。            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-04 09:50:25
                            
                                522阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
             C++ 和 OpenCV 实现卷积神经网络并加载 Keras 训练好的参数进行预测一. 背景二. Keras 定义神经网络结构channels_first 与 channels_lastchannels_first 与 channels_last 转换三. 用 C++ 和 OpenCV 实现网络结构输入图像处理卷积操作要点第一层 (conv_1)第二层 (max_pool_1)第三层 (conv            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-07 21:28:43
                            
                                109阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            支持向量机算法(SVM)实战支持向量机(Support Vector Machine,SVM)是一种常用于分类和回归问题的经典机器学习算法。SVM基于间隔最大化的思想来进行分类,即找到一个分类边界,使得不同类别的数据点到该分类边界的距离最大化。这个分类边界被称为“决策边界”或“超平面”。在本文中,使用Python和sklearn库来训练一个SVM分类器,并对鸢尾花数据集进行分类。加载数据集首先需要            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-14 11:59:46
                            
                                48阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            推荐算法实例代码:1.数据处理过程,主要涉及数据的读取,文件data_process.pyimport pandas as pd
import os
import csv
def get_item_info(input_file):
    """
    得到Item的信息
    input_file: Item的文件地址
    return:
        dict:  {itemID            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-11 22:03:46
                            
                                85阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            1.EM算法是什么EM算法可以用于有监督学习,也可以用于无监督学习。这个算法是根据观测结果求得对含有隐变量的模型的参数的估计。包含E步骤和M步,E步是求期望,M步是求极大似然估计,极大参数估计是对模型参数估计的一种方法。一个典型的应用EM算法进行参数估计的例子就是敏感问题的调查,我们想要得到人群中吸烟人数的比例,可以设置这样一个问卷问题1:你的手机尾号是偶数吗?若是,回答问题2,不是,则回答问题3            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-11 09:23:04
                            
                                83阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
              文章目录一、别名二、历史三、算法简介(1)核心思想(2)算法描述(3)时间复杂度分析四、算法的变种(1)FastLOF五、LOF在sklearn中的有关函数核心函数LocalOutlierFactor函数model.fit()函数model.kneighbors()函数model._decision_function()函数model._predict(x)六、代码七、应用领域(1)            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-18 22:14:26
                            
                                92阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            kNN(邻近)算法简介kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-06-26 15:46:10
                            
                                16阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            Apriori算法介绍:Apriori其实是为了降低搜索空间以及提高搜索速度而设计的一种算法,本文采用python实现,彻底理解“频繁项集的所有非空子集一定是频繁的”这句话,并实现连接步、剪枝步、规则生成、提升度计算等。本节代码参考了《机器学习实战》第十一章中的代码,也参考了R语言的arules包,该包没有实现一对多的规则,因此,在以上基础上进行了改进,包括实现剪枝步,规则生成(一对一,一对多,多            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-07-07 17:59:52
                            
                                79阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            一.题目:原生python实现knn分类算法(使用鸢尾花数据集)K最近邻(KNN,K-nearestNeighbor)分类算法的核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本属于也属于这个类别,并具有这个类别样本上的特性。即选取k个离测试点最近的样本点,输出在这k个样本点中数量最多的标签。所以要实现kNN算法,我们只需要计算出每一个样本点与测试点的距离(欧式            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-19 09:34:31
                            
                                50阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等。本文对于EM算法,我们主要从以下三个方向学习:1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率   我们经常会从样本观察数据中,找到样本的模型参数。最常用的方法就是极大化模型            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-20 07:33:24
                            
                                8阅读