一、 旧的数据结构 在老版本的 opencv 中,矩阵主要用 c 的结构体实现,主要的几个结构体为: cvArr (通用数组)、 cvMat (多通道二维矩阵)、 cvMatND (多通道多维稠密矩阵)、 cvSparseMat (多通道多维稀疏矩阵)、 IplImage (图片,二维矩阵,数据只能是1\2\3\4通道)、 CvSeq (序列) CvSet (集合,派生于序列CvSet) 很多函数
转载
2023-11-09 22:17:44
98阅读
主要实现的难点在于稀疏矩阵的转置以及矩阵乘法。对用到的数据结构定义不懂的可参考严蔚敏老师的数据结构书籍,这里讲严老师讲的两种数据结构三元组结构 和行逻辑结构 整合到一起。稀疏矩阵是线性结构中比较难的一块知识点,不懂的建议去b站看看严老师的视频。实现环境:linux数据结构typedef struct {
int i, j; //行坐标,列坐标
Elem e; //元素值
}Triple;//三
矩阵的存储方式完全存储方式:将矩阵的全部元素按列存储。稀疏存储方式:只存储矩阵的非零元素的值及其位置,即行号和列号。注意,采用稀疏存储方式时,矩阵元素的存储顺序并没有改变,也是按列的顺序进行存储。$ A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 2 & 0 & 0 &
转载
2024-03-06 22:53:03
64阅读
OpenCV中一般一张图片在内存中用Mat来表述及管理,Mat内部申请一块类似与数组的内存用于存储图片中的每个像素的值即为稠密矩阵,但是有时在矩阵中其值为零的元素远远多于非为零的元素个数即稀疏矩阵,如何此时还使用Mat进行存储 显然非常浪费空间,为了应对此中场景,OpenCV使用SparseMat类
原创
2022-01-25 14:47:42
493阅读
【定义】 所谓稀疏矩阵,假设在m×n矩阵中,有t个元素不为零,令δ=t/(m×n),δ为矩阵的稀疏因子,如果δ≤0.05,则称矩阵为稀疏矩阵。通俗的来讲,若矩阵中大多数元素的值为零,只有很少的非零元素,这样的矩阵就是稀疏矩阵。如图就是一个稀疏矩阵 【三元组表示】为了节省内存单元,需要对稀疏矩阵进行压缩存储。在进行压缩存储的过程中,我们可以只存储稀疏矩阵的非零元素,为了表示非零元素在矩阵中的位置,
转载
2023-07-14 22:21:03
421阅读
分布式算法设计1).MapReduce 在Map和Reduce两个基本算子抽象下,所谓Hadoop和Spark分布式计算框架并没有本质上的区别,仅仅是实现上的差异。阅读了不少分布式算法的实现(仅仅是实现,不涉及原理推导),大部分思路比较直观,大不了几个阶段的MapReduce就可以实现。这里主要介绍一个曾经困扰我好久且终于柳暗花明的问题,即“大规模稀疏矩阵乘法”。
转载
2023-11-11 16:31:34
179阅读
稀疏矩阵1. 什么是稀疏矩阵2. 稀疏矩阵的应用场景3. 稀疏矩阵的存储方式4. 稀疏矩阵的压缩存储方式4.1 三元组4.2 行逻辑链接的顺序表5. 三元组表示法简单实现稀疏矩阵的压缩存储与还原5.1 压缩稀疏矩阵5.2 将稀疏数组还原为二维数组6. 稀疏矩阵的转置6.1 稀疏矩阵的一般转置方法6.2 稀疏矩阵的快速转置算法 1. 什么是稀疏矩阵在矩阵中,若数据为0的元素数目远远多于非0元素的数
转载
2024-04-03 08:21:24
84阅读
在处理稀疏矩阵乘以稀疏矩阵的问题时,尤其在 Python 环境中,我们需要利用高效的存储和计算方式,以避免不必要的资源浪费。本文将详细记录解决“Python 稀疏矩阵乘稀疏矩阵”问题的过程,包括环境准备、集成步骤、配置详解、实战应用、性能优化和生态扩展。
### 环境准备
确保您有合适的环境来运行 Python 代码。推荐使用 Python 3.6 及以上版本,并安装 `scipy` 和 `n
title: 稀疏矩阵乘法 date: 2020-11-09 19:31:44 tags: 稀疏矩阵运算 categories: 数据结构 在本算法中,两个稀疏矩阵的特性都有用到
规定规定以下变量名称,本文讲述 矩阵A × 矩阵B = 矩阵C 的运算过程需要用到的存储结构有:矩阵A,矩阵 B 的原始二维数组(2个)矩阵A,矩阵B 的三元组数组(2个)存储 矩阵A,矩阵B 每行有多少个非零
转载
2024-04-09 16:43:11
105阅读
稀疏矩阵就是矩阵中分布着很多零元素(零元素个数远远大于非零元素个数),如果将这个矩阵的每个元素都一一存储,那是很浪费空间的。因此,可以采用一些特殊的存储结构来存储它。有以下几种方法: 1.顺序存储:三元组表示法、伪地址表示法 2.链式存储:邻接表表示法、十字链表表示法 这里介绍三元组表示法。 稀疏矩 ...
转载
2021-07-14 16:08:00
432阅读
2评论
一、稀疏矩阵的定义 对于那些零元素数目远远多于非零元素数目,而且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。 人们无法给出稀疏矩阵的确切定义,一般都仅仅是凭个人的直觉来理解这个概念,即矩阵中非零元素的个数远远小于矩阵元素的总数,而且非零元素没有分布规律。 二、稀疏矩阵的压缩存...
转载
2014-06-27 20:01:00
106阅读
2评论
一、稀疏矩阵的定义 对于那些零元素数目远远多于非零元素数目,而且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。 人们无法给出稀疏矩阵的确切定义,一般都仅仅是凭个人的直觉来理解这个概念,即矩阵中非零元素的个数远远小于矩阵元素的总数,而且非零元素没有分布规律。 二、稀疏矩阵的压缩存储 因为稀疏矩阵中非零元素较少,零元素较多,因此能够採用仅仅存储非零元素的方法来进行压缩存储。
转载
2015-02-05 20:35:00
99阅读
压缩稀疏数组,数组的恢复。
原创
2023-09-15 12:18:58
120阅读
#include<cstdio>#include<cstring>#define ElemType int #define
原创
2022-06-29 20:08:35
397阅读
问题: 现在有一个五子棋盘,如下,需要你进行存盘,然后以后在玩的时候还可以继续上一盘,你可以直接把这个11X11的棋盘直接保存到一个二维数组中,然后写进文件夹,但是你会发现,此时11X11的棋盘只有3个数据,其他都是无用的,占用内存空间,这显然转换成稀疏矩阵在存储,明显可以省略很多空间,接下来我们用Java代码模拟把它转换成稀疏矩阵,再从稀疏矩
转载
2024-01-20 21:49:52
107阅读
稀疏编码 首先介绍一下“稀疏编码”这一概念。 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片。而这些图像碎片几乎都可由64种正交的边组合得到。而且组合出一张碎片所需的边的数目很少,即稀疏的。同时在音频中大多数声音也可由几种基本结构组合得到。这其实就是特征的稀疏表达。即使用少量的基本特征来组合更加高层抽象的特征。在神经网络中即体现出前一层是未加工的像素,而后一层就是对这些像素的非线性
转载
2024-01-20 22:17:55
50阅读
一、稀疏矩阵的定义 对于那些零元素数目远远多于非零元素数目,而且非零元素的分布没有规律的矩阵称为稀疏矩阵(sparse)。 人们无法给出稀疏矩阵的确切定义,一般都仅仅是凭个人的直觉来理解这个概念,即矩阵中非零元素的个数远远小于矩阵元素的总数,而且非零元素没有分布规律。 二、稀疏矩阵的压缩存...
转载
2014-08-14 21:26:00
110阅读
2评论
原创
2021-04-09 13:48:02
116阅读
原创
2021-04-09 13:48:02
246阅读
一、sparse模块:python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其实就是基于sparse模块而来的导入模块:from scipy import sparse二、七种矩阵类型coo_matrixdok_matrixlil_matrixdia_matrixcsr_matrixcsc_matrixbsr_matrix三、coo_matr
转载
2023-06-02 23:18:32
237阅读