Python-opencv图像识别学习日记(1)——人脸检测一、前言第一次写博客,直接用的编辑器的模板,记录一下图像识别的学习过程…。之前一直对人脸识别、机器视觉等方面很感兴趣,利用课余时间学习一下,暂时不指望做出成型的项目,做点小东西(人脸门禁之类的)练练手。如有纰漏望指出…二、准备阶段一台安装了python3电脑(废话);一只摄像头(电脑自带);互联网(用于下载插件包);一颗爱学习的心哈哈哈哈
1)前言从18年开始,我接触了叉叉助手,通过图色识别,用来给常玩的游戏写挂机脚本,写了也有两三年.也算是我转行当游戏测试的理由. 去年11月,也是用了这身技术,混进了外包,薪资还不错,属于是混日子了,岗位是在发行,接触到很多游戏,因为接不了poco,到手只有apk, 日积月累,游戏越来越多,项目组却还是只有这点人.为了减轻自己的压力,就开始了UI自动化的不归路.2)游戏UI自动化因为游戏引擎,是无
Tensorflow V2.0 图像识别教程代码: https://github.com/dwSun/classification-tutorial.git教程参考官方专家高级教程: https://tensorflow.google.cn/tutorials/quickstart/advanced?hl=en这里以 TinyMind 《汉字书法识别》比赛数据为例,展示使用 Tensorflow
文章目录我的环境:一、前期工作1. 设置 GPU2. 导入数据3. 数据可视化二、构建简单的CNN网络三、训练模型1. 设置超参数2. 编写训练函数3. 编写测试函数4. 正式训练四、结果可视化 我的环境:语言环境:Python 3.6.8编译器:jupyter notebook深度学习环境:
torch==0.13.1、cuda==11.3torchvision==1.12.1、cud
【Opencv综合应用】自制训练集的人脸识别1——拍摄10张人脸图片一:主要步骤二:代码部分三:运行结果 疫情期间学校去不了,在家闲着没事,刚好有学校的比赛项目,就趁着机会做一下,顺便学习学习OpenCV我的环境与原文不同,我的环境为win10+opencv4.1.0+opencv-contrib4.1.0+VS2017一:主要步骤拍摄人脸图片 1、加载人脸检测器 2、打开电脑摄像头,载入视频流
几个月前,我写了一篇关于如何使用CNN(卷积神经网络)尤其是VGG16来分类图像的教程,该模型能够以很高的精确度识别我们日常生活中的1000种不同种类的物品。 那时,模型还是和Keras包分开的,我们得从free-standing GitHub repo上下载并手动安装;现
文章目录【 1. 图片采集 】【 2. 图片读取 】【 3. 图片展示 】【 4. 图片保存 】【 5. 功能展示 】 OpenCV是一个开源的跨平台计算机视觉库。 跨平台是指,它可以运行在Linux、Windows、Android和Mac OS等操作系统上。 OpenCV提供了多种语言的编程接口,例如C、C++、Python。 它实现了图像处理和计算机视觉方面的很多通用算法,具有轻量高效的特点
前言识别图形常用函数介绍
前言OpenCV在图像处理与计算机视觉方面有很多通用算法。因此可以用来人脸识别、图形识别、文字识别等等。对于复杂一点识别的可能还涉及到大量的识别训练,最后的匹配比较分类等等。后续可能会介绍文字识别、人脸识别等等。
图形识别图形识别指的是对常见的几何图形进行识别,它通过opencv进图形处理(二值化,图片灰度化,细化等等),获取图形轮廓特征,然后在应用几何图形特
转载
2023-10-03 13:52:47
453阅读
1. 切边源图像: 需求:扫描仪扫描到的法律文件,需要切边,去掉边缘空白,这样看上去才真实,人工操作成本与时间花费高,希望程序自动实现,高效、准确。 实现思路:边缘检测 + 轮廓发现或直线检测最大外接矩形。例子代码: #include 效果图 总结:先利用 Canny 算子检测图像的轮廓,再利用 findContours 发现轮廓,因为这时候会得到很多轮廓,而我们只
1、预处理图片数据集(1)增强数据集 如果图片数量少的话,可以通过keras.preprocessing.image中的ImageDataGenerator函数进行数据增强,即通过旋转,翻转等操作增加图片的数量。(训练集和测试集都要)from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_arra
项目需求如下图所示,图片内容是吊牌分为吊牌,是水洗标分为水洗,不包含这两项标为其他从上万张图片中挑出吊牌和水洗图片把混在一起的图片进行分类挑出实现方案:使用EasyDL定制AI训练平台的图像分类算法,训练模型并调用训练后的模型api,对本地图像进行分类操作图像数据创建图像分类数据集 上传图片 ——》在线标注等我标完200个图片之后,发现一个更方便的方法,建议多看文档,多摸索摸索因为我这边就三个标签
yolox训练自己的数据最近又需要训练图像识别模型,之前体验过yolov5,yolox也出来很久了还没来得及认识,这次就体验下,参考项目地址:https://github.com/Megvii-BaseDetection/YOLOX 文章目录yolox训练自己的数据前言一、环境工作二、数据准备三、先测试体验yolox1.下载Yolox的pth文件2.demo测试四、准备自有数据集五、修改配置文件1
深度学习入坑笔记之三---服装图像识别问题目录输入数据数据处理搭建模型评估模型 目录输入数据这里我们还是以MNIST数据为例,与上一篇的不同在于上一篇是关于手写体数字识别,本篇是关于服装的简单识别。 首先第一步是数据的录入,该数据及相关代码来自tensorflow官方教程,具体的代码实现如下:from __future__ import absolute_import, division, pr
keras_cnn_实现人脸训练分类废话不多扯,直接进入正题吧!今天在训练自己分割出来的图片,感觉效果挺不错的,所以在这分享一下心得,望入门的同孩采纳。 1、首先使用python OpenCV库里面的人脸检测分类器把你需要训练的测试人脸图片给提取出来,这一步很重要,因为deep learn他也不是万能的,很多原始人脸图片有很多干扰因素,直接拿去做模型训练效果是非常low的。所以必须得做这一步。而
35.OpenCV的人脸检测和识别——示例2(人脸识别训练本地数据) 文章目录前言一、采集人脸样本二、生成Label三、训练自己的数据模型四、进行人脸识别(图片文件)五、使用视频进行人脸识别六、OpenCV-Python资源下载总结 前言 人脸检测是指在图像中完成人脸定位的过程。人脸识别是在人脸检测的基础上进一步判断人的身份。本示例是对之前有关人脸检测和识别的代码总结。一、采集人脸样本 在fa
本文主要是使用caffe python做图片识别的示例包括训练数据lmdb生成,训练,以及模型测试,主要内容如下:训练,验证数据lmdb生成,主要包括:样本的预处理 (直方图均衡化,resize),训练样本以及验证样本的lmdb的生成,以及mean_file mean.binaryproto生成caffe中模型的定义,主要是修改 caffe Alexnet 训练文件train_val.protot
一、什么是计算机视觉? 为了说明这个问题我们来试想一个场景。 假设你和你女朋友去度假,然后你上传了很多照片到百度。但是现在在每张照片中找到你朋友的脸并标记它们要花费很多时间。实际上,百度已经足够智能,它可以帮你标记人物。那么,你认为自动的特征标记是如何工作的呢? 简单来说,它通过计算机视觉来实现。计
原创
2021-06-14 20:47:00
3710阅读
今天,在使用人脸识别的时候出现了一个问题我用了两种方法获取照片,一种是自定义相机,一种是调用系统相机调用系统相机,能够识别出来,没问题,然后我开始把人脸识别接口嵌入UI中,并使用自定义相机然后,出问题了,不论怎么识别,识别出来的结果都是正确的,也就是说,错误的照片也识别是正确的,这就是个大问题了但是,自定义相机得到的图片属性和调用系统相机得到的图片是一样的,然后测试开始先调用系统相机获得照片,up
转载
2023-09-26 16:57:02
94阅读
△ 来自虾米妈咪小朋友用妈妈的一寸照片通过了人脸识别,打击了小度音箱的家长监督机制。活体检测没做好。公交车身广告上的董明珠头像,被宁波交警系统拍了照,判定成“违法闯红灯”。活体检测没做好。所以,活体检测要怎么做?名叫Adrian Rosebrock的程序猿,写了份事无巨细的教程,从构建数据集开始,一步步教大家用AI分辨真人和照片,精细到每行代码的用途。△ 川川是假的,光头是真的
通过图像识别的学习,初步总结了图像识别的流程及归类,希望可以帮到正在学习的小伙伴。 一、前期准备工作 1、数据集的获取 在进行数据分析之前需要有数据进行识别,这里所谓的数据指的是图像,我们需要对需要识别的图像分好其类别才能更好的调用。下面以天气数据集为例,共分为四类,数据集划分如下图所示:['cloudy', 'rain', 'shine', 'sunrise'] 2、获取数据集路径 获取数据集的