@ 目录 一、Averaging平均滤波 二、Gaussian高斯模糊 三、Median中值模糊 四、Bilateral双边滤波 一、Averaging平均滤波 计算卷积框覆盖区域所有像素的平均值得到卷积的结果 # 输入图像 # 核的尺寸大小:(3,3) (5,15).....都可以,可以不是正方形 blur = cv2.blur(image, (15,15)) 二、Gaussian高斯模
转载 2020-06-19 17:16:00
230阅读
2评论
图像平滑处理的几种常用方法:均值滤波归一化滤波高斯模糊中值滤波平滑处理(模糊)的主要目的是去燥声:不同的处理方式适合不同的噪声图像,其中高斯模糊最常用。其实最重要的是对图像卷积的核的理解,核太大图像会失真,具体关于核的讲解点击传送门 图像噪声:引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清
转载 2023-06-30 19:39:19
125阅读
OpenCV图像平滑 OpenCV图像平滑 1 图像平滑 图像平滑,可用来对图像进行去噪 (noise reduction) 或 模糊化处理 (blurring),实际上图像平滑仍然属于图像空间滤波的一种 (低通滤波) 既然是滤波,则图像中任一点 (x, y),经过平滑滤波后的输出 g(
转载 2016-05-09 00:33:00
115阅读
blur:n. 模糊不清的事物;模糊的记忆;污迹 OpenCV的blur函数是用了均值滤波的原理#include <vector> #include <stdio.h> #include<opencv2/opencv.hpp> using namespace cv; using namespace std; int main() { Mat Img = i
原创 2023-05-28 00:44:41
122阅读
图像平滑处理 目标本教程教您怎样使用各种线性滤波器对图像进行平滑处理,相关OpenCV函数如下: blurGaussianBlurmedianBlurbilateralFilter 原理 Note以下原理来源于Richard Szeliski 的著作 Computer Vision: Algorithms and Applications 以及 Learn
转载 2023-12-20 10:24:53
229阅读
学习目标了解图像中的噪声类型了解平均滤波,高斯滤波,中值滤波等的内容能够使用滤波器对图像进行处理1 图像噪声由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。1.1 椒盐噪声椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。
图像平滑处理,从数值上来说是一种平滑化,从图形上来说相当于产生了模糊效果,中间点失去细节。图像平滑处理就是对图像进行滤波,所谓滤波就是重新计算图像中的各个像素点,使该像素点的值与周围的像素点的值相近。计算各个点的值通常使通过指定一个滤波核,并会将该滤波核在图像上滑动,从而能够计算除整幅图像的各个像素点的值。滤波核的大小通过为奇数,一般为3,5,7。OpenCV中的几种滤波方式:均值滤波方框滤波中值
用到的函数主要有5个: blur:均值滤波GaussianBlur:高斯滤波medianBlur:中值滤波bilateralFilter:双边滤波cvSmooth:1.0的滤波函数,根据参数不同可以进行不同的滤波 void cvSmooth( const CvArr* src, CvArr* dst,   int smoothtype=CV_GAUSSIAN,   int para
转载 2024-05-21 15:07:08
68阅读
图像平滑与滤波运用它,首先就要了解它,什么是平滑滤波?      平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。在看
转载 2024-01-01 11:32:18
170阅读
1、2D卷积 与一维信号一样,还可以使用各种低通滤波器(LPF),高通滤波器(HPF)等对图像进行滤波。LPF有助于消除噪声,使图像模糊等。HPF滤波器有助于在图像中找到边缘。 OpenCV提供了一个函数cv.filter2D来将内核与图像进行卷积。例如,我们将尝试对图像进行平均滤波。 操作如下:保
转载 2020-06-15 09:38:00
435阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5